Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell Mol Life Sci ; 79(6): 332, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648235

ABSTRACT

Heat shock proteins (HSPs) play oncogenic roles in human tumours. We reported a somatic inactivating mutation of HSP110 (HSP110DE9) in mismatch repair-deficient (dMMR) cancers displaying microsatellite instability (MSI) but did not assess its impact. We evaluated the impact of the Hsp110DE9 mutation on tumour development and the chemotherapy response in a dMMR knock-in mouse model (Hsp110DE9KIMsh2KO mice). The effect of the Hsp110DE9 mutation on tumorigenesis and survival was evaluated in Msh2KO mice that were null (Hsp110wt), heterozygous (Hsp110DE9KI/+), or homozygous (Hsp110DE9KI/KI) for the Hsp110DE9 mutation by assessing tumoral syndrome (organomegaly index, tumour staging) and survival (Kaplan-Meier curves). 5-Fluorouracil (5-FU), which is the backbone of chemotherapy regimens in gastrointestinal cancers and is commonly used in other tumour types but is not effective against dMMR cells in vivo, was administered to Hsp110DE9KI/KI, Hsp110DE9KI/+, and Hsp110wtMsh2KO mice. Hsp110, Ki67 (proliferation marker) and activated caspase-3 (apoptosis marker) expression were assessed in normal and tumour tissue samples by western blotting, immunophenotyping and cell sorting. Hsp110wt expression was drastically reduced or totally lost in tumours from Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice. The Hsp110DE9 mutation did not affect overall survival or tumoral syndrome in Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice but drastically improved the 5-FU response in all cohorts (Msh2KOHsp110DE9KI/KI: P5fu = 0.001; Msh2KOHsp110DE9KI/+: P5fu = 0.005; Msh2KOHsp110wt: P5fu = 0.335). Histopathological examination and cell sorting analyses confirmed major hypersensitization to 5-FU-induced death of both Hsp110DE9KI/KI and Hsp110DE9KI/+ dMMR cancer cells. This study highlights how dMMR tumour cells adapt to HSP110 inactivation but become hypersensitive to 5-FU, suggesting Hsp110DE9 as a predictive factor of 5-FU efficacy.


Subject(s)
Fluorouracil , HSP110 Heat-Shock Proteins , Neoplasms , Animals , Carcinogenesis/genetics , Fluorouracil/therapeutic use , HSP110 Heat-Shock Proteins/genetics , Mice , Microsatellite Instability , Mutation , Neoplasms/drug therapy , Neoplasms/genetics
2.
Gastroenterology ; 161(3): 814-826.e7, 2021 09.
Article in English | MEDLINE | ID: mdl-33992635

ABSTRACT

BACKGROUND & AIMS: Next-generation sequencing (NGS) was recently approved by the United States Food and Drug Administration to detect microsatellite instability (MSI) arising from defective mismatch repair (dMMR) in patients with metastatic colorectal cancer (mCRC) before treatment with immune checkpoint inhibitors (ICI). In this study, we aimed to evaluate and improve the performance of NGS to identify MSI in CRC, especially dMMR mCRC treated with ICI. METHODS: CRC samples used in this post hoc study were reassessed centrally for MSI and dMMR status using the reference methods of pentaplex polymerase chain reaction and immunohistochemistry. Whole-exome sequencing (WES) was used to evaluate MSISensor, the Food and Drug Administration-approved and NGS-based method for assessment of MSI. This was performed in (1) a prospective, multicenter cohort of 102 patients with mCRC (C1; 25 dMMR/MSI, 24 treated with ICI) from clinical trials NCT02840604 and NCT033501260, (2) an independent retrospective, multicenter cohort of 113 patients (C2; 25 mCRC, 88 non-mCRC, all dMMR/MSI untreated with ICI), and (3) a publicly available series of 118 patients with CRC from The Cancer Genome Atlas (C3; 51 dMMR/MSI). A new NGS-based algorithm, namely MSICare, was developed. Its performance for assessment of MSI was compared with MSISensor in C1, C2, and C3 at the exome level or after downsampling sequencing data to the MSK-IMPACT gene panel. MSICare was validated in an additional retrospective, multicenter cohort (C4) of 152 patients with new CRC (137 dMMR/MSI) enriched in tumors deficient in MSH6 (n = 35) and PMS2 (n = 9) after targeted sequencing of samples with an optimized set of microsatellite markers (MSIDIAG). RESULTS: At the exome level, MSISensor was highly specific but failed to diagnose MSI in 16% of MSI/dMMR mCRC from C1 (4 of 25; sensitivity, 84%; 95% confidence interval [CI], 63.9%-95.5%), 32% of mCRC (8 of 25; sensitivity, 68%; 95% CI, 46.5%-85.1%), and 9.1% of non-mCRC from C2 (8 of 88; sensitivity, 90.9%; 95% CI, 82.9%-96%), and 9.8% of CRC from C3 (5 of 51; sensitivity, 90.2%; 95% CI, 78.6%-96.7%). Misdiagnosis included 4 mCRCs treated with ICI, of which 3 showed an overall response rate without progression at this date. At the exome level, reevaluation of the MSI genomic signal using MSICare detected 100% of cases with true MSI status among C1 and C2. Further validation of MSICare was obtained in CRC tumors from C3, with 96.1% concordance for MSI status. Whereas misdiagnosis with MSISensor even increased when analyzing downsampled WES data from C1 and C2 with microsatellite markers restricted to the MSK-IMPACT gene panel (sensitivity, 72.5%; 95% CI, 64.2%-79.7%), particularly in the MSH6-deficient setting, MSICare sensitivity and specificity remained optimal (100%). Similar results were obtained with MSICare after targeted NGS of tumors from C4 with the optimized microsatellite panel MSIDIAG (sensitivity, 99.3%; 95% CI, 96%-100%; specificity, 100%). CONCLUSIONS: In contrast to MSISensor, the new MSICare test we propose performs at least as efficiently as the reference method, MSI polymerase chain reaction, to detect MSI in CRC regardless of the defective MMR protein under both WES and targeted NGS conditions. We suggest MSICare may rapidly become a reference method for NGS-based testing of MSI in CRC, especially in mCRC, where accurate MSI status is required before the prescription of ICI.


Subject(s)
Algorithms , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Exome Sequencing , High-Throughput Nucleotide Sequencing , Microsatellite Instability , Clinical Decision-Making , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Databases, Genetic , France , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry , Multiplex Polymerase Chain Reaction , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Retrospective Studies
3.
Sci Rep ; 10(1): 18742, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33128011

ABSTRACT

Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.


Subject(s)
Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/radiation effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cytoplasm/metabolism , Cytoplasm/radiation effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Nuclear Proteins/genetics , Radiation, Ionizing , Signal Transduction/genetics , Signal Transduction/radiation effects , Trans-Activators/genetics
4.
Med Sci (Paris) ; 35(6-7): 535-543, 2019.
Article in French | MEDLINE | ID: mdl-31274083

ABSTRACT

The human tumor phenotype referred to as MSI (Microsatellite Instability) is associated with inactivating alterations in MMR genes (Mismatch Repair). MSI was first observed in inherited malignancies associated with Lynch syndrome and later in sporadic colon, gastric and endometrial cancers. MSI tumors develop through a distinctive molecular pathway characterized by genetic instability in numerous microsatellite DNA repeat sequences throughout the genome. In this article, french researchers and physicians who have been recently awarded by the Fondation de France (Jean and Madeleine Schaeverbeke prize) make a sum of their activity in the MSI cancer field for more than 20 years. Their findings have greatly contributed to increase our knowledge of this original cancer model, laying the foundation for a personalized medicine of MSI tumors.


Subject(s)
Genomic Instability/physiology , Microsatellite Instability , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine/methods , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , DNA Mismatch Repair/genetics , HSP110 Heat-Shock Proteins/genetics , Humans , Neoplasms/diagnosis , Neoplasms/immunology , Precision Medicine/trends
5.
Bull Cancer ; 106(2): 119-128, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30713006

ABSTRACT

Microsatellite instability (MSI), which is caused by deficiency of the DNA mismatch repair (MMR) system, is the molecular abnormality observed in tumors associated with Lynch syndrome. Lynch syndrome represents one of the most frequent conditions of cancer predisposition in human, thus requiring specific care and genetic counseling. Moreover, research has recently focused increasingly on MMR deficiency due to its positive predictive value for the efficacy of immune checkpoints inhibitors (ICKi) in metastatic tumors, regardless of their primary origin. MSI has also been demonstrated to constitute an independent prognostic factor in several tumor types, being also associated with alternative response to chemotherapy. These observations have led many professional medical organizations to recommend universal screening of all newly diagnosed colorectal cancers for dMMR/MSI status and increasing evidence support the evaluation of MSI in all human tumors regardless of the cancer tissue of origin. Currently, two standard reference methods, namely immunohistochemistry and polymerase chain reaction, are recommended for the detection of dMMR/MSI status. These methods are equally valid as the initial screening test for dMMR/MSI in colorectal cancer. To date, there is no recommendation for the detection of dMMR/MSI in other primary tumors. In this review, we will present a comprehensive overview of the methods used for evaluation of tumor dMMR/MSI status in colorectal cancer, as well as in other tumor sites. We will see that the evaluation of this status remains challenging in some clinical settings, with the need to improve the above methods in these specific contexts.


Subject(s)
Colorectal Neoplasms/diagnosis , DNA Mismatch Repair , Microsatellite Instability , Algorithms , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Repair Enzymes/genetics , Humans , Immunohistochemistry , Mass Screening , Polymerase Chain Reaction
6.
Oncogenesis ; 7(9): 70, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30228267

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is responsible for the degradation of mRNAs with a premature termination codon (PTC). The role of this system in cancer is still quite poorly understood. In the present study, we evaluated the functional consequences of NMD activity in a subgroup of colorectal cancers (CRC) characterized by high levels of mRNAs with a PTC due to widespread instability in microsatellite sequences (MSI). In comparison to microsatellite stable (MSS) CRC, MSI CRC expressed increased levels of two critical activators of the NMD system, UPF1/2 and SMG1/6/7. Suppression of NMD activity led to the re-expression of dozens of PTC mRNAs. Amongst these, several encoded mutant proteins with putative deleterious activity against MSI tumorigenesis (e.g., HSP110DE9 chaperone mutant). Inhibition of NMD in vivo using amlexanox reduced MSI tumor growth, but not that of MSS tumors. These results suggest that inhibition of the oncogenic activity of NMD may be an effective strategy for the personalized treatment of MSI CRC.

7.
Cell Mol Gastroenterol Hepatol ; 6(3): 277-300, 2018.
Article in English | MEDLINE | ID: mdl-30116770

ABSTRACT

Background & Aims: Recent studies have shown that cancers arise as a result of the positive selection of driver somatic events in tumor DNA, with negative selection playing only a minor role, if any. However, these investigations were concerned with alterations at nonrepetitive sequences and did not take into account mutations in repetitive sequences that have very high pathophysiological relevance in the tumors showing microsatellite instability (MSI) resulting from mismatch repair deficiency investigated in the present study. Methods: We performed whole-exome sequencing of 47 MSI colorectal cancers (CRCs) and confirmed results in an independent cohort of 53 MSI CRCs. We used a probabilistic model of mutational events within microsatellites, while adapting pre-existing models to analyze nonrepetitive DNA sequences. Negatively selected coding alterations in MSI CRCs were investigated for their functional and clinical impact in CRC cell lines and in a third cohort of 164 MSI CRC patients. Results: Both positive and negative selection of somatic mutations in DNA repeats was observed, leading us to identify the expected true driver genes associated with the MSI-driven tumorigenic process. Several coding negatively selected MSI-related mutational events (n = 5) were shown to have deleterious effects on tumor cells. In the tumors in which deleterious MSI mutations were observed despite the negative selection, they were associated with worse survival in MSI CRC patients (hazard ratio, 3; 95% CI, 1.1-7.9; P = .03), suggesting their anticancer impact should be offset by other as yet unknown oncogenic processes that contribute to a poor prognosis. Conclusions: The present results identify the positive and negative driver somatic mutations acting in MSI-driven tumorigenesis, suggesting that genomic instability in MSI CRC plays a dual role in achieving tumor cell transformation. Exome sequencing data have been deposited in the European genome-phenome archive (accession: EGAS00001002477).


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Microsatellite Instability , Mutation/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Cell Line, Tumor , Cohort Studies , Female , Heterografts , Humans , Male , Mice , Mice, Nude , Models, Statistical , Exome Sequencing
8.
J Natl Cancer Inst ; 110(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-28922790

ABSTRACT

Background: Immune checkpoint (ICK) expression might represent a surrogate measure of tumor-infiltrating T cell (CTL) exhaustion and therefore be a more accurate prognostic biomarker for colorectal cancer (CRC) patients than CTL enumeration as measured by the Immunoscore. Methods: The expression of ICKs, Th1, CTLs, cytotoxicity-related genes, and metagenes, including Immunoscore-like metagenes, were evaluated in three independent cohorts of CRC samples (260 microsatellite instable [MSI], 971 non-MSI). Their associations with patient survival were analyzed by Cox models, taking into account the microsatellite instability (MSI) status and affiliation with various Consensus Molecular Subgroups (CMS). PD-L1 and CD8 expression were examined on a subset of tumors with immunohistochemistry. All statistical tests were two-sided. Results: The expression of Immunoscore-like metagenes was statistically significantly associated with improved outcome in non-MSI tumors displaying low levels of both CTLs and immune checkpoints (ICKs; CMS2 and CMS3; hazard ratio [HR] = 0.63, 95% confidence interval [CI] = 0.43 to 0.92, P = .02; and HR = 0.55, 95% CI = 0.34 to 0.90, P = .02, respectively), but clearly had no prognostic relevance in CRCs displaying higher levels of CTLs and ICKs (CMS1 and CMS4; HR = 0.46, 95% CI = 0.10 to 2.10, P = .32; and HR = 1.13, 95% CI = 0.79 to 1.63, P = .50, respectively), including MSI tumors. ICK metagene expression was statistically significantly associated with worse prognosis independent of tumor staging in MSI tumors (HR = 3.46, 95% CI = 1.41 to 8.49, P = .007). ICK expression had a negative impact on the proliferation of infiltrating CD8 T cells in MSI neoplasms (median = 0.56 in ICK low vs median = 0.34 in ICK high, P = .004). Conclusions: ICK expression cancels the prognostic relevance of CTLs in highly immunogenic colon tumors and predicts a poor outcome in MSI CRC patients.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating , T-Lymphocytes, Cytotoxic , Antigens, CD/genetics , B7-H1 Antigen/analysis , B7-H1 Antigen/genetics , CD8 Antigens/analysis , CTLA-4 Antigen/genetics , Colon/chemistry , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/pathology , Female , Gene Expression , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Inducible T-Cell Co-Stimulator Protein/genetics , Male , Microsatellite Instability , Middle Aged , Neoplasm Staging , Prognosis , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Receptor/genetics , Retrospective Studies , Survival Rate , Th1 Cells , Lymphocyte Activation Gene 3 Protein
9.
Hum Mutat ; 39(3): 441-453, 2018 03.
Article in English | MEDLINE | ID: mdl-29227006

ABSTRACT

Every colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI) to screen for Lynch syndrome. Evaluation of MSI status involves screening tumor DNA for the presence of somatic deletions in DNA repeats using PCR followed by fragment analysis. While this method may lack sensitivity due to the presence of a high level of germline DNA, which frequently contaminates the core of primary colon tumors, no other method developed to date is capable of modifying the standard PCR protocol to achieve improvement of MSI detection. Here, we describe a new approach developed for the ultra-sensitive detection of MSI in CRC based on E-ice-COLD-PCR, using HSP110 T17, a mononucleotide DNA repeat previously proposed as an optimal marker to detect MSI in tumor DNA, and an oligo(dT)16 LNA blocker probe complementary to wild-type genotypes. The HT17 E-ice-COLD-PCR assay improved MSI detection by 20-200-fold compared with standard PCR using HT17 alone. It presents an analytical sensitivity of 0.1%-0.05% of mutant alleles in wild-type background, thus greatly improving MSI detection in CRC samples highly contaminated with normal DNA. HT17 E-ice-COLD-PCR is a rapid, cost-effective, easy-to-implement, and highly sensitive method, which could significantly improve the detection of MSI in routine clinical testing.


Subject(s)
Colorectal Neoplasms/genetics , HSP110 Heat-Shock Proteins/genetics , Microsatellite Instability , Polymerase Chain Reaction/methods , Cell Line, Tumor , Cold Temperature , Germ Cells/metabolism , Humans , Mutation/genetics , Reference Standards
10.
Gastroenterology ; 154(4): 1061-1065, 2018 03.
Article in English | MEDLINE | ID: mdl-29158190

ABSTRACT

Microsatellite instability (MSI) caused by mismatch repair deficiency (dMMR) is detected in a small proportion of pancreatic ductal adenocarcinomas (PDACs). dMMR and MSI have been associated with responses of metastatic tumors, including PDACs, to immune checkpoint inhibitor therapy. We performed immunohistochemical analyses of a 445 PDAC specimens, collected from consecutive patients at multiple centers, to identify those with dMMR, based on loss of mismatch repair proteins MLH1, MSH2, MSH6, and/or PMS2. We detected dMMR in 1.6% of tumor samples; we found dMMR in a larger proportion of intraductal papillary mucinous neoplasms-related tumors (4/58, 6.9%) than non- intraductal papillary mucinous neoplasms PDAC (5/385, 1.3%) (P = .02). PDACs with dMMR contained potentially immunogenic mutations because of MSI in coding repeat sequences. PDACs with dMMR or MSI had a higher density of CD8+ T cells at the invasive front than PDACs without dMMR or MSI (P = .08; Fisher exact test). A higher proportion of PDACs with dMMR or MSI expressed the CD274 molecule (PD-L1, 8/9) than PDACs without dMMR or MSI (4/10) (P = .05). Times of disease-free survival and overall survival did not differ significantly between patients with PDACs with dMMR or MSI vs without dMMR or MSI. Studies are needed to determine whether these features of PDACs with dMMR or MSI might serve as prognostic factors.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Microsatellite Instability , Neoplasms, Cystic, Mucinous, and Serous/genetics , Pancreatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/chemistry , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , DNA-Binding Proteins/analysis , Disease-Free Survival , Female , Genetic Predisposition to Disease , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Mismatch Repair Endonuclease PMS2/analysis , MutL Protein Homolog 1/analysis , MutS Homolog 2 Protein/analysis , Neoplasms, Cystic, Mucinous, and Serous/chemistry , Neoplasms, Cystic, Mucinous, and Serous/immunology , Neoplasms, Cystic, Mucinous, and Serous/pathology , Pancreatic Neoplasms/chemistry , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Phenotype , Time Factors
11.
Oncoimmunology ; 5(7): e1170264, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27622020

ABSTRACT

HSP110 is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps the cells to survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently showed that colorectal cancer (CRC) patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110 inactivating mutation (HSP110DE9). In this work, we have used patients' biopsies and human CRC cells grown in vitro and in vivo (xenografts) to demonstrate that (1) HSP110 is secreted by CRC cells and that the amount of this extracellular HSP110 is strongly decreased by the expression of the mutant HSP110DE9, (2) Supernatants from CRC cells overexpressing HSP110 or purified recombinant human HSP110 (LPS-free) affect macrophage differentiation/polarization by favoring a pro-tumor, anti-inflammatory profile, (3) Conversely, inhibition of HSP110 (expression of siRNA, HSP110DE9 or immunodepletion) induced the formation of macrophages with a cytotoxic, pro-inflammatory profile. (4) Finally, this effect of extracellular HSP110 on macrophages seems to implicate TLR4. These results together with the fact that colorectal tumor biopsies with HSP110 high were infiltrated with macrophages with a pro-tumoral profile while those with HSP110 low were infiltrated with macrophages with a cytotoxic profile, suggest that the effect of extracellular HSP110 function on macrophages may also contribute to the poor outcomes associated with HSP110 expression.

12.
J Med Genet ; 53(6): 377-84, 2016 06.
Article in English | MEDLINE | ID: mdl-26831756

ABSTRACT

BACKGROUND: Every colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI, a marker for defective DNA mismatch repair) as a first screen for Lynch syndrome (LS). In this study, we investigated whether it may be possible to improve the detection of MSI in CRC. We examined whether the HT17 DNA repeat (critical for correct splicing of the chaperone HSP110) might constitute a superior marker for diagnosis of the MSI phenotype in patients with CRC compared with the standard panel of markers (pentaplex). METHODS: The HT17 polymorphism was analysed in germline DNA from 1037 multi-ethnic individuals. We assessed its sensitivity and specificity for detecting MSI in a multicentre, population-based cohort of 685 patients with CRC and an additional series of 70 patients with CRC considered to be at-risk of LS. All cases were screened earlier for MSI using pentaplex markers. Cases showing discordant HT17/pentaplex results were further examined for the expression of mismatch repair proteins. RESULTS: HT17 status was analysed independently and blinded to previous results from pentaplex genotyping. HT17 showed no germline allelic variation outside a very narrow range. Compared with the pentaplex panel, HT17 showed better sensitivity (0.984 (95% CI 0.968 to 0.995) vs 0.951 (95% CI 0.925 to 0.972)) and similar specificity (0.997 (95% CI 0.989 to 1.000) for both) for the detection of MSI. Furthermore, HT17 alone correctly classified samples judged to be uncertain with the pentaplex panel and showed excellent ability to detect MSI in patients with LS. CONCLUSIONS: HT17 simplifies and improves the current standard molecular methods for detecting MSI in CRC.


Subject(s)
Colorectal Neoplasms/genetics , HSP110 Heat-Shock Proteins/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA/genetics , DNA Mismatch Repair/genetics , Genotype , Humans , Microsatellite Instability
13.
Oncotarget ; 6(28): 24969-77, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26327213

ABSTRACT

Mismatch-repair (MMR)-deficient cells show increased in vitro tolerance to thiopurines because they escape apoptosis resulting from MMR-dependent signaling of drug-induced DNA damage. Prolonged treatment with immunosuppressants including azathioprine (Aza), a thiopurine prodrug, has been suggested as a risk factor for the development of late onset leukemias/lymphomas displaying a microsatellite instability (MSI) phenotype, the hallmark of a defective MMR system. We performed a dose effect study in mice to investigate the development of MSI lymphomas associated with long term Aza treatment. Over two years, Aza was administered to mice that were wild type, null or heterozygous for the MMR gene Msh2. Ciclosporin A, an immunosuppressant with an MMR-independent signaling, was also administered to Msh2(wt) mice as controls. Survival, lymphoma incidence and MSI tumor phenotype were investigated. Msh2(+/-) mice were found more tolerant than Msh2(wt) mice to the cytotoxicity of Aza. In Msh2(+/-) mice, Aza induced a high incidence of MSI lymphomas in a dose-dependent manner. In Msh2(wt) mice, a substantial lifespan was only observed at the lowest Aza dose. It was associated with the development of lymphomas, one of which displayed the MSI phenotype, unlike the CsA-induced lymphomas. Our findings define Aza as a risk factor for an MSI-driven lymphomagenesis process.


Subject(s)
Azathioprine/toxicity , Lymphoma/genetics , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Adult , Aged , Animals , DNA Mismatch Repair/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Immunosuppressive Agents/toxicity , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Kaplan-Meier Estimate , Lymphoma/chemically induced , Lymphoma/metabolism , Male , Mice, Knockout , Middle Aged , MutS Homolog 2 Protein/metabolism , Phenotype , Risk Assessment/methods , Risk Factors , Time Factors , Young Adult
14.
Gastroenterology ; 149(4): 1017-29.e3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116798

ABSTRACT

BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION: The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Drug Resistance, Neoplasm , Genetic Testing , Germ-Line Mutation , Lymphocytes/drug effects , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Caco-2 Cells , Case-Control Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mutational Analysis , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , HCT116 Cells , Heredity , Humans , Lymphocytes/metabolism , Male , Methylation , Mismatch Repair Endonuclease PMS2 , Multiplex Polymerase Chain Reaction , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/drug therapy , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Neoplastic Syndromes, Hereditary/pathology , Nuclear Proteins/genetics , Phenotype , Predictive Value of Tests , Reproducibility of Results , Transfection , Young Adult
15.
Gastroenterology ; 146(2): 401-11.e1, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24512910

ABSTRACT

BACKGROUND & AIMS: Patients with colorectal tumors with microsatellite instability (MSI) have better prognoses than patients with tumors without MSI, but have a poor response to 5-fluorouracil­based chemotherapy. A dominant-negative form of heat shock protein (HSP)110 (HSP110DE9) expressed by cancer cells with MSI, via exon skipping caused by somatic deletions in the T(17) intron repeat, sensitizes the cells to 5-fluorouracil and oxaliplatin.We investigated whether HSP110 T(17) could be used to identify patients with colorectal cancer who would benefit from adjuvant chemotherapy with 5-fluorouracil and oxaliplatin. METHODS: We characterized the interaction between HSP110 and HSP110DE9 using surface plasmon resonance. By using polymerase chain reaction and fragment analysis, we examined how the size of somatic allelic deletions in HSP110 T(17) affected the HSP110 protein expressed by tumor cells. We screened 329 consecutive patients with stage II­III colorectal tumors with MSI who underwent surgical resection at tertiary medical centers for HSP110 T(17). RESULTS: HSP110 and HSP110DE9 interacted in a1:1 ratio. Tumor cells with large deletions in T(17) had increased ratios of HSP110DE9:HSP110, owing to the loss of expression of full-length HSP110. Deletions in HSP110 T(17) were mostly biallelic in primary tumor samples with MSI. Patients with stage II­III cancer who received chemotherapy and had large HSP110 T(17) deletions (≥5 bp; 18 of 77 patients, 23.4%) had longer times of relapse-free survival than patients with small or no deletions (≤4 bp; 59 of 77 patients, 76.6%) in multivariate analysis (hazard ratio, 0.16; 95% confidence interval, 0.012­0.8; P = .03). We found a significant interaction between chemotherapy and T17 deletion (P =.009). CONCLUSIONS: About 25% of patients with stages II­III colorectal tumors with MSI have an excellent response to chemotherapy, due to large, biallelic deletions in the T(17) intron repeat of HSP110 in tumor DNA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Base Sequence , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/genetics , Microsatellite Instability , Sequence Deletion , Aged , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Chemotherapy, Adjuvant , Colectomy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Female , Fluorouracil/administration & dosage , Follow-Up Studies , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Humans , Introns , Leucovorin/administration & dosage , Male , Models, Molecular , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Retrospective Studies , Surface Plasmon Resonance , Survival Analysis , Treatment Outcome
16.
Cell Mol Life Sci ; 70(4): 729-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23007843

ABSTRACT

Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of "stemness". These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.


Subject(s)
Colorectal Neoplasms/pathology , Spheroids, Cellular/pathology , Animals , Antimetabolites, Antineoplastic/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Neoplasm Recurrence, Local , Rectum/drug effects , Rectum/metabolism , Rectum/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
17.
Adv Cancer Res ; 113: 121-66, 2012.
Article in English | MEDLINE | ID: mdl-22429854

ABSTRACT

The familial cancer syndrome referred to as Lynch I and II was renamed hereditary nonpolyposis colorectal cancer (HNPCC) only to revert later to Lynch syndrome (LS). LS is the most frequent human predisposition for the development of colorectal cancer (CRC), and probably also for endometrial and gastric cancers, although it has yet to acquire a consensus name. Its estimated prevalence ranges widely from 2% to 7% of all CRCs due to the fact that tumors from patients with LS are difficult to recognize at both the clinical and molecular level. This review is based on two assumptions. First, all LS patients inherit a predisposition to develop CRC (without polyposis) and/or other tumors from the Lynch spectrum. Second, all LS patients have a germline defect in one of the DNA mismatch repair (MMR) genes. When a somatic second hit inactivates the relevant MMR gene, the consequence is instability of DNA repeat sequences such as microsatellites and the tumors are referred to as having the microsatellite instability (MSI) phenotype. However, some of the inherited predisposition to develop CRC without concurrent polyposis, termed HNPCC, is found in non-LS patients, while not all MSI tumors are from LS cases. LS tumors are therefore at the junction of inherited and MSI cases. We describe here the defining characteristics of LS tumors that differentiate them from inherited non-MSI tumors and from non-inherited MSI tumors.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Genetic Predisposition to Disease , Microsatellite Instability , Microsatellite Repeats/genetics , Adenomatous Polyposis Coli/genetics , DNA Mismatch Repair/genetics , Genetic Testing , Germ-Line Mutation , Humans
19.
DNA Repair (Amst) ; 11(3): 294-303, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22226374

ABSTRACT

In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2. In contrast, apn1 apn2 rad17, apn1 apn2 ddc1 and apn1 apn2 rad24 triple mutants are viable, although they exhibit a strong Can(R) spontaneous mutator phenotype. In these strains, high Can(R) mutation rate is dependent upon functional uracil DNA N-glycosylase (Ung1p) and mutation spectra are dominated by AT to CG events. The results point to a role for Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in the prevention of mutations caused by abasic (AP) sites linked to incorporation of dUTP into DNA followed by the excision of uracil by Ung1p. The antimutator role of the (9-1-1) clamp can either rely on its essential function in the induction of the DNA damage checkpoint or to another function that specifically impacts DNA repair and/or mutagenesis at AP sites. Here, we show that the abrogation of the DNA damage checkpoint is not sufficient to enhance spontaneous mutagenesis in the apn1 apn2 rad9 sml1 quadruple mutant. Spontaneous mutagenesis was also explored in strains deficient in the two major DNA N-glycosylases/AP-lyases (Ntg1p and Ntg2p). Indeed, apn1 apn2 ntg1 ntg2 exhibits a strong Ung1p-dependent Can(R) mutator phenotype with a spectrum enriched in AT to CG, like apn1 apn2 rad17. However, genetic analysis reveals that ntg1 ntg2 and rad17 are not epistatic for spontaneous mutagenesis in apn1 apn2. We conclude that under normal growth conditions, dUTP incorporation into DNA is a major source of AP sites that cause high genetic instability in the absence of BER factors (Apn1p, Apn2p, Ntg1p and Ntg2p) and Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in yeast.


Subject(s)
DNA Damage , DNA Repair/genetics , DNA, Fungal/metabolism , Deoxyuracil Nucleotides/metabolism , Mutation/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle Checkpoints , Microbial Viability , Mutagenesis , Mutation Rate , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...