Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(21): 8085-8095, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37200151

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.


Subject(s)
Nanoparticles , Spiders , Animals , Ecosystem , Food Chain , Copper/pharmacology , Rivers , Insecta , Spiders/physiology , Gold/pharmacology
2.
Environ Sci Technol ; 54(16): 10170-10180, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32672035

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment.


Subject(s)
Ecosystem , Metal Nanoparticles , Animals , Copper , Gold , Nitrogen , Nutrients , Phosphorus
3.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31951397

ABSTRACT

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Subject(s)
Metal Nanoparticles , Nanostructures , Copper , Fresh Water , Gold , Seasons , Wetlands
4.
Environ Sci Technol ; 53(6): 3268-3276, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30776221

ABSTRACT

Most studies of bacterial exposure to environmental contaminants focus on acute treatments; however, the impacts of single, high-dose exposures on microbial communities may not readily be extended to the more likely scenario of chronic, low-dose contaminant exposures. Here, in a year-long, wetland mesocosm experiment, we compared microbial community responses to pulse (single 450 mg dose of silver) and chronic (weekly 8.7 mg doses of silver for 1 year) silver nanoparticle (Ag0 NP) treatments, as well as a chronic treatment of "aged" sulfidized silver nanoparticles (Ag2S NPs). While mesocosms exposed to Ag2S NPs never differed significantly from the controls, both Ag0 NP treatments exhibited reduced microbial diversity and altered community composition; however, the effects differed in timing, duration, and magnitude. Microbial community-level impacts in the acute Ag0 NP treatment were apparent only within the first weeks and then converged on the control mesocosm composition, while chronic exposure effects were observed several months after exposures began, likely due to interactive effects of nanoparticle toxicity and winter environmental conditions. Notably, there was a high level of overlap in the taxa which exhibited significant declines (>10×) in both treatments, suggesting a conserved toxicity response for both pulse and chronic exposures. Thus, this research suggests that complex, but short-term, acute toxicological studies may provide critical, cost-effective insights into identifying microbial taxa sensitive to long-term chronic exposures to Ag NPs.


Subject(s)
Metal Nanoparticles , Silver , Wetlands
5.
Front Microbiol ; 9: 1769, 2018.
Article in English | MEDLINE | ID: mdl-30108580

ABSTRACT

The environmental fate and potential impacts of nanopesticides on agroecosystems under realistic agricultural conditions are poorly understood. As a result, the benefits and risks of these novel formulations compared to the conventional products are currently unclear. Here, we examined the effects of repeated realistic exposures of the Cu(OH)2 nanopesticide, Kocide 3000, on simulated agricultural pastureland in an outdoor mesocosm experiment over 1 year. The Kocide applications were performed alongside three different mineral fertilization levels (Ambient, Low, and High) to assess the environmental impacts of this nanopesticide under low-input or conventional farming scenarios. The effects of Kocide over time were monitored on forage biomass, plant mineral nutrient content, plant-associated non-target microorganisms (i.e., N-fixing bacteria or mycorrhizal fungi) and six soil microbial enzyme activities. We observed that three sequential Kocide applications had no negative effects on forage biomass, root mycorrhizal colonization or soil nitrogen fixation rates. In the Low and High fertilization treatments, we observed a significant increase in aboveground plant biomass after the second Kocide exposure (+14% and +27%, respectively). Soil microbial enzyme activities were significantly reduced in the short-term after the first exposure (day 15) in the Ambient (-28% to -82%) and Low fertilization (-25% to -47%) but not in the High fertilization treatment. However, 2 months later, enzyme activities were similar across treatments and were either unresponsive or responded positively to subsequent Kocide additions. There appeared to be some long-term effects of Kocide exposure, as 6 months after the last Kocide exposure (day 365), both beta-glucosidase (-57% in Ambient and -40% in High fertilization) and phosphatase activities (-47% in Ambient fertilization) were significantly reduced in the mesocosms exposed to the nanopesticide. These results suggest that when used in conventional farming with high fertilization rates, Kocide applications did not lead to marked adverse effects on forage biomass production and key plant-microorganism interactions over a growing season. However, in the context of low-input organic farming for which this nanopesticide is approved, Kocide applications may have some unintended detrimental effects on microbially mediated soil processes involved in carbon and phosphorus cycling.

6.
Environ Sci Technol ; 52(17): 10048-10056, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30075078

ABSTRACT

The environmental impacts of manufactured nanoparticles are often studied using high-concentration pulse-additions of freshly synthesized nanoparticles, while predicted releases are characterized by chronic low-concentration additions of weathered particles. To test the effects in wetlands of addition rate and nanoparticle speciation on water column silver concentrations, ecosystem impacts, and silver accumulation by biota, we conducted a year-long mesocosm experiment. We compared a pulse addition of Ag0-NPs to chronic weekly additions of either Ag0-NPs or sulfidized silver nanoparticles. The initially high water column silver concentrations in the pulse treatment declined such that after 4 weeks it was lower on average than in the two chronic treatments. While the pulse caused a marked increase in dissolved methane in the first week of the experiment, the chronic treatments had smaller increases in methane concentration that were more prolonged between weeks 28-45. Much like water column silver, most organisms in chronic treatments had comparable silver concentrations to the pulse treatment after only 4 weeks, and all but one organism had similar or higher concentrations than the pulse treatment after one year. Pulse exposures thus both overestimate the intensity of short-term exposures and effects and underestimate the more realistic long-term exposure, ecosystem effects, and accumulation seen in chronic exposures.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Ecosystem , Silver , Wetlands
7.
Ecol Appl ; 28(6): 1435-1449, 2018 09.
Article in English | MEDLINE | ID: mdl-29939451

ABSTRACT

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.


Subject(s)
Copper/toxicity , Eutrophication , Gold/toxicity , Hydroxides/toxicity , Nanoparticles/toxicity , Wetlands , Hydrocharitaceae/growth & development , Oxygen/metabolism
8.
Environ Sci Technol ; 52(5): 2558-2565, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29381864

ABSTRACT

Silver nanoparticles (AgNPs) are increasingly used in consumer products, biotechnology, and medicine, and are released into aquatic ecosystems through wastewater discharge. This study investigated the phytotoxicity of AgNPs to aquatic plants, Egeria densa and Juncus effusus by measuring physiologic and enzymatic responses to AgNP exposure under three release scenarios: two chronic (8.7 mg, weekly) exposures to either zerovalent AgNPs or sulfidized silver nanoparticles; and a pulsed (450 mg, one-time) exposure to zerovalent AgNPs. Plant enzymatic and biochemical stress responses were assessed using superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) concentrations and chlorophyll content as markers of defense and phytotoxicity, respectively. The high initial pulse treatment resulted in rapid changes in physiological characteristics and silver concentration in plant tissue at the beginning of each AgNPs exposure (6 h, 36 h, and 9 days), while continuous AgNP and sulfidized AgNP chronic treatments gave delayed responses. Both E. densa and J. effusus enhanced their tolerance to AgNPs toxicity by increasing POD and SOD activities to scavenge free radicals but at different growth phases. Chlorophyll did not change. After AgNPs exposure, MDA, an index of membrane damage, was higher in submerged E. densa than emergent J. effusus, which suggested that engineered nanoparticles exerted more stress to submerged macrophytes.


Subject(s)
Metal Nanoparticles , Silver , Ecosystem , Malondialdehyde , Superoxide Dismutase
9.
Environ Sci Technol ; 51(9): 4936-4943, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28383882

ABSTRACT

Aquatic ecosystems are expected to receive Ag0 and Ag2S nanoparticles (NPs) through anthropogenic waste streams. The speciation of silver in Ag-NPs affects their fate in ecosystems, but its influence on interactions with aquatic plants is still unclear. Here, the Ag speciation and distribution was measured in an aquatic plant, duckweed (Landoltia punctata), exposed to Ag0 or Ag2S NPs, or to AgNO3. The silver distribution in duckweed roots was visualized using synchrotron-based micro X-ray fluorescence (XRF) mapping and Ag speciation was determined using extended X-ray absorption fine structure (EXAFS) spectroscopy. Duckweed exposed to Ag2S-NPs or Ag0-NPs accumulated similar Ag concentrations despite an order of magnitude smaller dissolved Ag fraction measured in the exposure medium for Ag2S-NPs compared to Ag0-NPs. By 24 h after exposure, all three forms of silver had accumulated on and partially in the roots regardless of the form of Ag exposed to the plants. Once associated with duckweed tissue, Ag0-NPs had transformed primarily into silver sulfide and silver thiol species. This suggests that plant defenses were active within or at the root surface. The Ag2S-NPs remained as Ag2S, while AgNO3 exposure led to Ag0 and sulfur-associated Ag species in plant tissue. Thus, regardless of initial speciation, Ag was readily available to duckweed.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Araceae , Plant Roots
10.
Environ Toxicol Chem ; 35(12): 2941-2947, 2016 12.
Article in English | MEDLINE | ID: mdl-27153481

ABSTRACT

Carbon nanomaterials are considered promising for applications in energy storage, catalysis, and electronics. This has motivated study of their potential environmental toxicity. Recently, a novel nanomaterial consisting of graphene oxide wrapped around a carbon nanotube (CNT) core was synthesized. The resulting soluble graphitic nanofibers were found to have superior catalytic properties, which could result in their use in fuel cells. Before this material undergoes widespread use, its environmental toxicity must be determined because of its aqueous solubility. The authors used the plant species Lolium multiflorum, Solanum lycopersicum, and Lactuca sativa to study the toxicity of the soluble graphitic nanofibers, as well as multiwalled carbon nanotubes (MWCNTs) and graphene oxide, all synthesized in-house. Soluble graphitic nanofiber-exposed plant roots and shoots showed decreased growth, with roots showing more toxicity than shoots. Decreased pH of nanomaterial solutions corresponded to insignificantly decreased root growth, suggesting that another mechanism of toxicity must exist. Agglomeration and adsorption of soluble graphitic nanofibers onto the roots likely caused the remaining toxicity because a gray layer could be seen around the surface of the root. Multiwalled carbon nanotubes showed little toxicity over the concentration range tested, whereas graphene oxide showed a unique pattern of high toxicity at both the lowest and highest concentrations tested. Overall, soluble graphitic nanofibers showed moderate toxicity between that of the more toxic graphene oxide and the relatively nontoxic MWCNTs. Environ Toxicol Chem 2016;35:2941-2947. © 2016 SETAC.


Subject(s)
Graphite/toxicity , Lolium/drug effects , Nanofibers/toxicity , Solanum lycopersicum/drug effects , Adsorption , Catalysis , Graphite/chemistry , Hydrogen-Ion Concentration , Lolium/growth & development , Lolium/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Microscopy, Electron, Transmission , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Photoelectron Spectroscopy , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Solubility , Spectrum Analysis, Raman
11.
Sci Total Environ ; 557-558: 740-53, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27046139

ABSTRACT

Engineered nanomaterials (ENMs) are currently widely incorporated in the outdoor urban environmental fabric and numerous new applications and products containing ENMs are expected in the future. As has been shown repeatedly, products containing ENMs have the potential, at some point in their lifetime, to release ENMs into their surrounding environment. However, the expanding body in environmental nanomaterial research has not yet shifted toward ENMs in the context of the complex outdoor urban environment. This is especially surprising because the world's human populations are on a steady march toward more and more urbanization and technological development, accompanied with increased applications for ENMs in the outdoor urban environment. Our objective for this paper is therefore to review, assess, and provide new information in this emerging field. We provide an overview of nanomaterials (NMs, encompassing both ENMs and incidental nanomaterials, INMs) that are likely to be released in the urban environment from outdoor sources by discussing 1) the applications of ENMs that may lead to release of ENMs in urban areas, 2) the recently published data on the release of ENMs from novel nano-enabled applications in the outdoor urban environment, 3) the available literature on the occurrence of INMs in the atmosphere and within/on dust particles, and 4) the potential pathways and fate of NMs in the outdoor urban environment. This review is then followed by three case studies demonstrating the importance of NMs in the outdoor urban environment. The first and second case studies illustrate the occurrence of NMs in urban dust and stormwater ponds, respectively, whereas the third case study discusses the lessons learned from the release of NMs (e.g. Pt, ph and Rh) from automotive vehicle catalytic convertors. This article ends with a discussion of the research priorities needed to advance this emerging field of "outdoor urban nanomaterials" and to assess the potential risks of NMs in the context of urban environments.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Manufactured Materials , Nanostructures , Cities
12.
Environ Sci Technol ; 49(16): 10093-8, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26146787

ABSTRACT

The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.


Subject(s)
Environmental Pollutants/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Lolium/drug effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Plant Roots/drug effects , Plant Roots/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
13.
Environ Sci Technol ; 49(14): 8451-60, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26106801

ABSTRACT

Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.


Subject(s)
Environmental Pollutants/pharmacokinetics , Medicago sativa/drug effects , Metal Nanoparticles , Silver Compounds/pharmacokinetics , Silver/pharmacokinetics , Biological Availability , Biological Transport , Cytoplasm/drug effects , Cytoplasm/metabolism , Medicago sativa/metabolism , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Silver/analysis , Soil , Spectrometry, X-Ray Emission , Wastewater/chemistry
14.
Environ Toxicol Chem ; 34(9): 2023-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25892495

ABSTRACT

Although sediment is generally considered to be the major sink for nanomaterials in aquatic environments, few studies have addressed the ecotoxicity of nanomaterials in the presence of sediment. In the present study, the ecotoxicity of silver nanoparticles (AgNPs) with a range of organic coatings was examined in a freshwater sediment-dwelling organism, Chironomus riparius, using acute and chronic ecotoxicity endpoints, including molecular indicators. The toxicity of AgNPs coated with different organic materials, such as polyvinylpyrrolidone, gum arabic, and citrate, to C. riparius was compared with that of bare-AgNPs and AgNO3 (ionic silver). Total silver concentration was also measured to monitor the behavior of the AgNPs in water and sediment and to determine how ion dissolution affects the toxicity of all AgNPs. The coated- and bare-AgNPs caused DNA damage and oxidative stress-related gene expression. In addition, the bare-AgNPs and AgNO3 had a significant effect on development and reproduction. The surface coatings generally mitigated the toxicity of AgNPs to C. riparius, which can be explained by the reduced number of ions released from coated-AgNPs. Citrate-AgNPs caused the most significant alteration at the molecular level, but this did not translate to higher-level effects. Finally, comparing previously conducted studies on AgNP-induced gene expression without sediments, the authors show that the presence of sediment appears to mitigate the toxicity of AgNPs.


Subject(s)
Chironomidae/drug effects , DNA Damage/drug effects , Metal Nanoparticles/toxicity , Silver/chemistry , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/genetics , Chironomidae/metabolism , Citric Acid/chemistry , Geologic Sediments/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Povidone , Toxicity Tests , Transcriptome/drug effects , Water Pollutants, Chemical/chemistry
15.
Environ Sci Technol ; 49(6): 3375-82, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25688977

ABSTRACT

A coal ash spill that occurred from an ash impoundment pond into the Dan River, North Carolina, provided a unique opportunity to study the significance and role of naturally occurring and incidental nanomaterials associated with contaminant distribution from a large-scale, acute aquatic contamination event. Besides traditional measurements of bulk watercolumn and sediment metal concentrations, the nanoparticle (NP) analyses are based on cross-flow ultrafiltration (CFUF) and advanced transmission electron microscopy (TEM) techniques. A drain pipe fed by coal ash impoundment seepage showed a high level of arsenic, with concentrations many times over the EPA limit. The majority of the arsenic was found sorbed to large aggregates dominated by incidental iron oxyhydroxide (ferrihydrite) NPs, while the remainder of the arsenic was truly dissolved. These ferrihydrites were probably formed in situ where Fe(II) was leached through subsurface flowpaths into an aerobic environment, and further act as a significant contributor to the elevated As concentrations in downstream sediments after the spill. In addition, we discovered and describe a photocatalytic nano-TiO2 phase (anatase) present in the coal ash impacted river water that was also carrying/transporting transition metals (Cu, Fe), which may also have environmental consequences.


Subject(s)
Coal Ash , Metal Nanoparticles/analysis , Water Pollutants, Chemical/analysis , Arsenic/analysis , Chemical Hazard Release , Coal Ash/analysis , Coal Ash/chemistry , Ferric Compounds/chemistry , Metals/analysis , Microscopy, Electron, Transmission/methods , Nanotechnology/methods , North Carolina , Rivers , Titanium/analysis , Titanium/chemistry , Ultrafiltration
16.
Environ Toxicol Chem ; 34(2): 275-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25393776

ABSTRACT

The use of silver nanoparticles (AgNPs) in consumer products and industrial applications, as well as their recent detection in waste streams, has created concern about potential impacts on aquatic ecosystems. The effect of complex environmental media on AgNP toxicity was investigated using wetland mesocosms and smaller scale microcosms. Mesocosms were dosed with 2.5 mg Ag/L as gum arabic (GA)-coated AgNPs, polyvinylpyrrolidone (PVP)-coated AgNPs, or AgNO3. Water samples were taken from mesocosms 24 h after dosing for acute toxicity tests with embryos and larvae of Atlantic killifish (Fundulus heteroclitus) and the nematode Caenorhabditis elegans. Acute toxicity tests were also performed on Atlantic killifish with AgNO3, GA AgNPs, and PVP AgNPs prepared in the laboratory with similar water. For killifish embryos, mesocosm samples were much less toxic than laboratory samples for all types of silver. For larvae, in contrast, all 3 silver mesocosm treatments exhibited toxicity. Interestingly, mesocosm samples of AgNO3 were less toxic than laboratory samples; samples containing GA AgNPs were similar in toxicity, and samples containing PVP AgNPs were more toxic. For C. elegans, results were similar to killifish larvae. Results obtained from the mesocosms were not replicated on the smaller scale of the microcosms. These results indicate that environmental factors unique to the mesocosms acted differentially on AgNO3 to reduce its toxicity in a manner that does not translate to AgNPs for larval fish.


Subject(s)
Caenorhabditis elegans/drug effects , Fundulidae/metabolism , Laboratories , Metal Nanoparticles/toxicity , Silver/toxicity , Toxicity Tests , Animals , Embryo, Nonmammalian/drug effects , Larva/drug effects
17.
PLoS One ; 9(8): e106059, 2014.
Article in English | MEDLINE | ID: mdl-25170943

ABSTRACT

Differences in species' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth.


Subject(s)
Grassland , Nitrogen/metabolism , Plants/metabolism , Soil Microbiology , Soil/chemistry , Biodiversity , Biomass , Models, Biological , Nitrogen Cycle , Plants/classification , Population Dynamics , Seasons , Species Specificity
18.
Environ Sci Technol ; 48(9): 5229-36, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24693948

ABSTRACT

The use of antimicrobial silver nanoparticles (AgNPs) in consumer-products is rising. Much of these AgNPs are expected to enter the wastewater stream, with up to 10% of that eventually released as effluent into aquatic ecosystems with unknown ecological consequences. We examined AgNP impacts on aquatic ecosystems by comparing the effects of two AgNP sizes (12 and 49 nm) to ionic silver (Ag(+); added as AgNO3), a historically problematic contaminant with known impacts. Using 19 wetland mesocosms, we added Ag to the 360 L aquatic compartment to reach 2.5 mg Ag L(-1). Silver treatments and two coating controls were done in triplicate, and compared to four replicate controls. All three silver treatments were toxic to aquatic plants, leading to a significant release of dissolved organic carbon and chloride following exposure. Simultaneously, dissolved methane concentrations increased forty-fold relative to controls in all three Ag treatments. Despite dramatic toxicity differences observed in lab studies for these three forms of Ag, our results show surprising convergence in the direction, magnitude, and duration of ecosystem-scale impacts for all Ag treatments. Our results suggest that all forms of Ag changed solute chemistry driving transformations of Ag which then altered Ag impacts.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Wetlands , Metal Nanoparticles/chemistry , Particle Size , Plants/drug effects , Reproducibility of Results , Silver/chemistry
19.
Environ Sci Technol ; 47(23): 13440-8, 2013.
Article in English | MEDLINE | ID: mdl-24180218

ABSTRACT

Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify physical and chemical transformations that affect the nanomaterial properties and their toxicity. Silver nanoparticles, one of the most toxic and well-studied nanomaterials, readily react with sulfide to form Ag(0)/Ag2S core-shell particles. Here, we show that sulfidation decreased silver nanoparticle toxicity to four diverse types of aquatic and terrestrial eukaryotic organisms (Danio rerio (zebrafish), Fundulus heteroclitus (killifish), Caenorhabditis elegans (nematode worm), and the aquatic plant Lemna minuta (least duckweed)). Toxicity reduction, which was dramatic in killifish and duckweed even for low extents of sulfidation (about 2 mol % S), is primarily associated with a decrease in Ag(+) concentration after sulfidation due to the lower solubility of Ag2S relative to elemental Ag (Ag(0)). These results suggest that even partial sulfidation of AgNP will decrease the toxicity of AgNPs relative to their pristine counterparts. We also show that, for a given organism, the presence of chloride in the exposure media strongly affects the toxicity results by affecting Ag speciation. These results highlight the need to consider environmental transformations of NPs in assessing their toxicity to accurately portray their potential environmental risks.


Subject(s)
Antidotes/chemistry , Embryo, Nonmammalian/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Silver/chemistry , Sulfides/chemistry , Animals , Araceae/drug effects , Caenorhabditis elegans/drug effects , Chlorides/chemistry , Fundulidae/metabolism , Lethal Dose 50 , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Povidone , Regression Analysis , Solubility , Zebrafish/metabolism
20.
Glob Chang Biol ; 19(10): 2976-85, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749653

ABSTRACT

Coastal wetlands have the capacity to retain and denitrify large quantities of reactive nitrogen (N), making them important in attenuating increased anthropogenic N flux to coastal ecosystems. The ability of coastal wetlands to retain and transform N is being reduced by wetland losses resulting from land development. Nitrogen retention in coastal wetlands is further threatened by the increasing frequency and spatial extent of saltwater inundation in historically freshwater ecosystems, due to the combined effects of dredging, declining river discharge to coastal areas due to human water use, increased drought frequency, and accelerating sea-level rise. Because saltwater incursion may affect N cycling through multiple mechanisms, the impacts of salinization on coastal freshwater wetland N retention and transformation are not well understood. Here, we show that repeated annual saltwater incursion during late summer droughts in the coastal plain of North Carolina changed N export from organic to inorganic forms and led to a doubling of annual NH(4)(+) export from a 440 hectare former agricultural field undergoing wetland restoration. Soil solution NH(4)(+) concentrations in two mature wetlands also increased with salinization, but the magnitude of increase was smaller than that in the former agricultural field. Long-term saltwater exposure experiments with intact soil columns demonstrated that much of the increase in reactive N released could be explained by exchange of salt cations with sediment NH(4)(+). Using these findings together with the predicted flooding of 1661 km(2) of wetlands along the NC coast by 2100, we estimate that saltwater incursion into these coastal areas could release up to 18 077 Mg N, or approximately half the annual NH(4)(+) flux of the Mississippi River. Our results suggest that saltwater incursion into coastal freshwater wetlands globally could lead to increased N loading to sensitive coastal waters.


Subject(s)
Droughts , Nitrogen/analysis , Seawater , Wetlands , Ammonium Compounds/analysis , Chlorides/analysis , Nitrates/analysis , North Carolina , Sulfates/analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...