Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Handb Exp Pharmacol ; 249: 1-12, 2018.
Article in English | MEDLINE | ID: mdl-28332049

ABSTRACT

The high heterogeneity and genomic instability of malignant tumors explains why even responsive tumors contain cell clones that are resistant for many possible mechanisms involving intracellular drug inactivation, low uptake or high efflux of anticancer drugs from cancer cells, qualitative or quantitative changes in the drug target. Many tumors, however, are resistant because of insufficient exposure to anticancer drugs, due to pharmacokinetic reasons and inefficient and heterogeneous tumor drug distribution, related to a deficient vascularization and high interstitial pressure. Finally, resistance can be related to the activation of anti-apoptotic and cell survival pathways by cancer cells and often enhanced by tumor microenvironment.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Apoptosis , Genomic Instability , Humans , Tumor Microenvironment
2.
Oncol Lett ; 12(4): 2493-2500, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27698818

ABSTRACT

Innovative therapies in cervical cancer (CC) remain a priority. Recent data indicate that human immunodeficiency virus (HIV)-protease inhibitors used in highly active antiretroviral therapy can exert direct antitumor activities also in HIV-free preclinical and clinical models. The aim of the present study was to evaluate the antineoplastic effects of various HIV-protease inhibitors (indinavir, ritonavir and saquinavir) on primary and established CC cell lines. Two CC cell lines established in our laboratory and four commercially available CC cell lines were treated with indinavir, ritonavir and saquinavir at different concentrations and for different times. Proliferation, clonogenicity and radiosensitivity were evaluated by crystal violet staining. Proteasomal activities were assessed using a cell-based assay and immunoblotting. Cell cycle was analyzed by propidium iodide staining and flow cytometric analysis. Invasion was tested with Matrigel chambers. A t-test for paired samples was used for statistical analysis. In all cell lines, saquinavir was more effective than ritonavir in reducing cell proliferation and inhibiting proteasomal activities (P≤0.05). Conversely, indinavir exerted a negligible effect. The saquinavir concentrations required to modulate the proteasome activities were higher than those observed to be effective in inhibiting cell proliferation. In HeLa cells, saquinavir was strongly effective in inhibiting cell invasion and clonogenicity (P≤0.05) at concentrations much lower than those required to perturb proteasomal activities. Saquinavir did not contribute to increase the sensitivity of HeLa cells to X-rays. In conclusion, the present results demonstrate that saquinavir is able to significantly reduce cell proliferation, cell invasion and clonogenicity in a proteasome-independent manner in in vitro models of CC, and suggest that saquinavir could be a promising CC therapeutic agent.

3.
Drug Discov Today Technol ; 11: 73-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24847656

ABSTRACT

In this paper multiple resistance mechanisms to minor groove binders (MGBs) are overviewed. MGBs with antitumor properties are natural products or their derivatives and, as expected, they are all substrates of P-glycoprotein (P-gp). However, a moderate expression of P-gp does not appear to reduce the sensitivity to trabectedin, the only MGB so far approved for clinical use. Resistance to this drug is often related to transcriptional mechanisms and to DNA repair pathways, particularly defects in transcription-coupled nucleotide excision repair (TC-NER). Therefore tumors resistant to trabectedin may become hypersensitive to UV rays and other DNA damaging agents acting in the major groove, such as Platinum (Pt) complexes. If this is confirmed in clinic, that will provide the rationale to combine trabectedin sequentially with Pt derivates.


Subject(s)
Drug Resistance , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , DNA Repair , Guanine/metabolism , Humans , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL