Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38827455

ABSTRACT

Background & Purpose: FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. Methods: A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. Results: The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. Conclusions: This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.

2.
Article in English | MEDLINE | ID: mdl-38554830

ABSTRACT

PURPOSE: The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations. METHODS AND MATERIALS: For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric. RESULTS: Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively. CONCLUSIONS: This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.

3.
Front Oncol ; 13: 1197079, 2023.
Article in English | MEDLINE | ID: mdl-37228501

ABSTRACT

A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.

4.
J Appl Clin Med Phys ; 22(3): 94-106, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33547766

ABSTRACT

PURPOSE: First, this experimental study aims at comparing out-of-field doses delivered by three radiotherapy techniques (3DCRT, VMAT (two different accelerators), and tomotherapy) for a pediatric renal treatment. Secondly, the accuracy of treatment planning systems (TPS) for out-of-field calculation is evaluated. METHODS: EBT3 films were positioned in pediatric phantoms (5 and 10 yr old). They were irradiated according to four plans: 3DCRT (Clinac 2100CS, Varian), VMAT (Clinac 2100CS and Halcyon, Varian), and tomotherapy for a same target volume. 3D dose determination was performed with an in-house Matlab tool using linear interpolation of film measurements. 1D and 3D comparisons were made between techniques. Finally, measurements were compared to the Eclipse (Varian) and Tomotherapy (Accuray) TPS calculations. RESULTS: Advanced radiotherapy techniques (VMATs and tomotherapy) deliver higher out-of-field doses compared to 3DCRT due to increased beam-on time triggered by intensity modulation. Differences increase with distance to target and reach a factor of 3 between VMAT and 3DCRT. Besides, tomotherapy delivers lower doses than VMAT: although tomotherapy beam-on time is higher than in VMAT, the additional shielding of the Hi-Art system reduces out-of-field doses. The latest generation Halcyon system proves to deliver lower peripheral doses than conventional accelerators. Regarding TPS calculation, tomotherapy proves to be suitable for out-of-field dose determination up to 30 cm from field edge whereas Eclipse (AAA and AXB) largely underestimates those doses. CONCLUSION: This study shows that the high dose conformation allowed by advanced radiotherapy is done at the cost of higher peripheral doses. In the context of treatment-related risk estimation, the consequence of this increase might be significative. Modern systems require adapted head shielding and a particular attention has to be taken regarding on-board imaging dose. Finally, TPS advanced dose calculation algorithms do not certify dose accuracy beyond field edges, and thus, those doses are not suitable for risk assessment.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Child , Humans , Phantoms, Imaging , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...