Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 8(3): 361-367, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36625288

ABSTRACT

We report on a large improvement of the thermal stability and mechanical properties of amorphous boron-nitride upon carbon doping. By generating versatile force fields using first-principles and machine learning simulations, we investigate the structural properties of amorphous boron-nitride with varying contents of carbon (from a few percent to 40 at%). We found that for 20 at% of carbon, the sp3/sp2 ratio reaches a maximum with a negligible graphitisation effect, resulting in an improvement of the thermal stability by up to 20% while the bulk Young's modulus increases by about 30%. These results provide a guide to experimentalists and engineers to further tailor the growth conditions of BN-based compounds as non-conductive diffusion barriers and ultralow dielectric coefficient materials for a number of applications including interconnect technology.

2.
Nano Lett ; 21(2): 1161-1168, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33411539

ABSTRACT

Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.

3.
ACS Appl Mater Interfaces ; 12(32): 36688-36694, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32667778

ABSTRACT

Hexagonal boron nitride (h-BN) has been considered a promising dielectric for two-dimensional (2D) material-based electronics due to its atomically smooth and charge-free interface with an in-plane lattice constant similar to that of graphene. Here, we report atomic layer deposition of boron nitride (ALD-BN) using BCl3 and NH3 precursors directly on thermal SiO2 substrates at a relatively low temperature of 600 °C. The films were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy wherein the uniform, atomically smooth, and nanocrystalline layered-BN thin film growth is observed. The growth rate is ∼0.042 nm/cycle at 600 °C, a temperature significantly lower than that of h-BN grown by chemical vapor deposition. The dielectric properties of the ALD-BN measured from Metal Oxide Semiconductor Capacitors are comparable with that of SiO2. Moreover, the ALD-BN exhibits a 2-fold increase in carrier mobility of graphene field effect transistors (G-FETs/ALD-BN/SiO2) due to the lower surface charge density and inert surface of ALD-BN in comparison to that of G-FETs fabricated on bare SiO2. Therefore, this work suggests that the transfer-free deposition of ALD-BN on SiO2 may be a promising candidate as a substrate for high performance graphene devices.

4.
Materials (Basel) ; 12(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405129

ABSTRACT

The phase change materials (PCMs) used in devices for thermal energy storage (TES) and management are often characterized by low thermal conductivity, a limit for their applicability. Composite PCMs (C-PCM), which combine active phase (proper PCM) with a passive phase with high conductivity and melting temperature have thus been proposed. The paper deals with the effect of length-scale on thermal characterization methods of C-PCM. The first part of the work includes a review of techniques proposed in the scientific literature. Up to now, special focus has been given to effective thermal conductivity and diffusivity at room or low temperature, at which both phases are solid. Conventional equipment has been used, neglecting length-scale effect in cases of coarse porous structures. An experimental set-up developed to characterize the thermal response of course porous C-PCMs also during active phase transition at high temperature is then presented. The setup, including high temperature-heat flux sensors and thermocouples to be located within samples, has been applied to evaluate the thermal response of some of the above C-PCMs. Experimental test results match Finite Elements (FE) simulations well, once a proper lattice model has been selected for the porous passive phase. FE simulations can then be used to estimate temperature difference between active and passive phase that prevents considering the C-PCM as a homogeneous material, to describe it by effective thermo-physical properties. In the engineering field, under these conditions, the design steps for TES systems design cannot be simplified by considering C-PCMs as homogeneous materials in FE codes.

5.
ACS Appl Mater Interfaces ; 11(5): 5208-5214, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30652846

ABSTRACT

Increasing interest in the development of alternative energy storage technologies has led to efforts being taken to improve the energy density of dielectric capacitors with high power density. However, dielectric polymer materials still have low energy densities because of their low dielectric constant, whereas Pb-based materials are limited by environmental issues and regulations. Here, the energy storage behaviors of atomic layer-deposited Hf1- XZr XO2 ( X = 0-1) thin films (10 nm) and the phase transformation mechanism associated with an enhancement of their energy density are reported using unipolar pulse measurements. Based on electrical and material characterization, the energy density and energy efficiency are dependent on the Zr content, and stress-induced crystallization by the encapsulating Hf1- XZr XO2 films with TiN top electrodes prior to annealing can enhance the energy density (up to 47 J/cm3 at a small voltage value of 3.5 MV/cm) while minimizing energy loss even at low process temperatures (400 °C). This work will facilitate the realization of Hf1- XZr XO2-based capacitors for lead-free electrostatic energy storage applications.

6.
Adv Mater ; 31(10): e1806663, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30663121

ABSTRACT

The pervasiveness of information technologies is generating an impressive amount of data, which need to be accessed very quickly. Nonvolatile memories (NVMs) are making inroads into high-capacity storage to replace hard disk drives, fuelling the expansion of the global storage memory market. As silicon-based flash memories are approaching their fundamental limit, vertical stacking of multiple memory cell layers, innovative device concepts, and novel materials are being investigated. In this context, emerging 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous, offer a host of physical and chemical properties, which could both improve existing memory technologies and enable the next generation of low-cost, flexible, and wearable storage devices. Herein, an overview of graphene and related 2D materials (GRMs) in different types of NVM cells is provided, including resistive random-access, flash, magnetic and phase-change memories. The physical and chemical mechanisms underlying the switching of GRM-based memory devices studied in the last decade are discussed. Although at this stage most of the proof-of-concept devices investigated do not compete with state-of-the-art devices, a number of promising technological advancements have emerged. Here, the most relevant material properties and device structures are analyzed, emphasizing opportunities and challenges toward the realization of practical NVM devices.

7.
Craniomaxillofac Trauma Reconstr ; 11(4): 305-313, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30574275

ABSTRACT

The authors report the surgical treatment of an extensive right frontal sinus osteoma assisted by neuronavigation and reconstruction by a hydroxyapatite custom-made implant. The patient presents with ptosis, hypoglobus, and proptosis of the right eye, without any visual impairment. Computed tomographic (CT) scan showed a very large bony mass involving right frontal sinus and displacing the orbital roof. A stereolithographic model-guided planning was carried out to obtain a practical simulation of the surgical operation and it was submitted to a new CT scan to acquire the reference point to realize the neuronavigation assistance, and to achieve the template to realize the hydroxyapatite custom-made implant. Intraoperatively, with the help of neuronavigation assistance, osteotomies were performed by piezoelectric device. The reconstruction was made using a hydroxyapatite custom-made implant. The procedure was damage free, the bony mass was excised, and the orbital roof was repaired without any adverse effects. Postsurgical CT scan and scintigraphy showed a good reconstruction and a good-quality osteoblasts activity on the borders of the implant. Osteoma is a benign slow-growing bone tumor, usually involving the frontal sinus. Navigational assistance offers a very important help to perform safe osteotomies. Hydroxyapatite custom-made implant seems to be an excellent reconstructive method.

8.
ACS Appl Mater Interfaces ; 10(51): 44862-44870, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30489058

ABSTRACT

Chemical vapor deposition (CVD) of two-dimensional materials has been an active area of research in recent years because it is a scalable process for obtaining thin films that can be used to fabricate devices. The growth mechanism for hexagonal boron nitride (h-BN) on metal catalyst substrates has been described to be either surface energy-driven or diffusion-driven. In this work, h-BN is grown in a CVD system on Ni single-crystal substrates as a function of Ni crystallographic orientation to clarify the competing forces acting on the growth mechanism. We observed that the thickness of the h-BN film depends on the Ni substrate orientation, with the growth rate increasing from the (100) surface to the (111) surface and the highest on the (110) surface. We associate the observed results with surface reactivity and diffusivity differences for different Ni orientations. Boron and nitrogen diffuse and precipitate from the Ni bulk to form thin multilayer h-BN. Our results serve to clarify the h-BN CVD growth mechanism which has been previously ascribed to a surface energy-driven growth mechanism.

9.
ACS Nano ; 12(9): 9372-9380, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30148597

ABSTRACT

Mass production of large, high-quality single-crystalline graphene is dependent on a complex coupling of factors including substrate material, temperature, pressure, gas flow, and the concentration of carbon and hydrogen species. Recent studies have shown that the oxidation of the substrate surface such as Cu before the introduction of the C precursor, methane, results in a significant increase in the growth rate of graphene while the number of nuclei on the surface of the Cu substrate decreases. We report on a phase-field model, where we include the effects of oxygen on the number of nuclei, the energetics at the growth front, and the graphene island morphology on Cu. Our calculations reproduce the experimental observations, thus validating the proposed model. Finally, and more importantly, we present growth rate from our model as a function of O concentration and precursor flux to guide the efficient growth of large single-crystal graphene of high quality.

10.
Nanoscale ; 10(31): 15023-15034, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30052245

ABSTRACT

Two-dimensional materials have shown great promise for implementation in next-generation devices. However, controlling the film thickness during epitaxial growth remains elusive and must be fully understood before wide scale industrial application. Currently, uncontrolled multilayer growth is frequently observed, and not only does this growth mode contradict theoretical expectations, but it also breaks the inversion symmetry of the bulk crystal. In this work, a multiscale theoretical investigation aided by experimental evidence is carried out to identify the mechanism of such an unconventional, yet widely observed multilayer growth in the epitaxy of layered materials. This work reveals the subtle mechanistic similarities between multilayer concentric growth and spiral growth. Using the combination of experimental demonstration and simulations, this work presents an extended analysis of the driving forces behind this non-ideal growth mode, and the conditions that promote the formation of these defects. Our study shows that multilayer growth can be a result of both chalcogen deficiency and chalcogen excess: the former causes metal clustering as nucleation defects, and the latter generates in-domain step edges facilitating multilayer growth. Based on this fundamental understanding, our findings provide guidelines for the narrow window of growth conditions which enables large-area, layer-by-layer growth.

11.
Nat Nanotechnol ; 13(6): 520, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29789635

ABSTRACT

In the version of this Perspective originally published, in the email address for the author Giuseppe Iannaccone, the surname was incorrectly given as "innaconne"; this has now been corrected in all versions of the Perspective. Also, an error in the production process led to Figs. 1, 2 and 3 being of low resolution; these have now been replaced with higher-quality versions.

12.
Nat Nanotechnol ; 13(3): 183-191, 2018 03.
Article in English | MEDLINE | ID: mdl-29511331

ABSTRACT

Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

13.
ACS Nano ; 11(10): 10243-10252, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28832118

ABSTRACT

The successful realization of high-performance 2D-materials-based nanoelectronics requires integration of high-quality dielectric films as a gate insulator. In this work, we explore the integration of organic and inorganic hybrid dielectrics on MoS2 and study the chemical and electrical properties of these hybrid films. Our atomic force microscopy, X-ray photoelectron spectroscopy (XPS), Raman, and photoluminescence results show that, aside from the excellent film uniformity and thickness scalability down to 2.5 nm, the molecular layer deposition of octenyltrichlorosilane (OTS) and Al2O3 hybrid films preserves the chemical and structural integrity of the MoS2 surface. The XPS band alignment analysis and electrical characterization reveal that through the inclusion of an organic layer in the dielectric film, the band gap and dielectric constant can be tuned from ∼7.00 to 6.09 eV and ∼9.0 to 4.5, respectively. Furthermore, the hybrid films show promising dielectric properties, including a high breakdown field of ∼7.8 MV/cm, a low leakage current density of ∼1 × 10-6 A/cm2 at 1 MV/cm, a small hysteresis of ∼50 mV, and a top-gate subthreshold voltage swing of ∼79 mV/dec. Our experimental findings provide a facile way of fabricating scalable hybrid gate dielectrics on transition metal dichalcogenides for 2D-material-based flexible electronics applications.

14.
Sci Rep ; 7(1): 2977, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592802

ABSTRACT

Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

15.
Adv Mater ; 28(29): 6264, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27478085

ABSTRACT

Synthesis of graphene films on copper foils is discussed by X. Li, L. Colombo, and R. S. Ruoff on page 6247. Graphene can grow on metal substrates by chemical vapor deposition of hydrocarbons. Hydrocarbons crack on a metal surface, nucleate, grow, and finally merge to form a continuous graphene film. Copper is one of the best candidates for graphene growth due to the advantages of good control over the graphene thickness, the growth of high-quality graphene, and the ease for graphene transfer, and has been widely used for production of large-area graphene films in both academia and industry.

16.
Adv Mater ; 28(29): 6247-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26991960

ABSTRACT

Over the past decade, graphene has advanced rapidly as one of the most promising materials changing human life. Development of production-worthy synthetic methodologies for the preparation of various types of graphene forms the basis for its investigation and applications. Graphene can be used in the forms of either microflake powders or large-area thin films. Graphene powders are prepared by the exfoliation of graphite or the reduction of graphene oxide, while graphene films are prepared predominantly by chemical vapor deposition (CVD) on a variety of substrates. Both metal and dielectric substrates have been explored; while dielectric substrates are preferred over any other substrate, much higher quality graphene large-area films have been grown on metal substrates such as Cu. The focus here is on the progress of graphene synthesis on Cu foils by CVD, including various CVD techniques, graphene growth mechanisms and kinetics, strategies for synthesizing large-area graphene single crystals, graphene transfer techniques, and, finally, challenges and prospects are discussed.

17.
Nat Nanotechnol ; 11(5): 426-31, 2016 05.
Article in English | MEDLINE | ID: mdl-26828845

ABSTRACT

Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices. A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers and maximal area of Bernal stacking, which is necessary for bandgap tunability. Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional 'surface-limited' growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 10(4), and a tunable bandgap up to ∼100 meV at a displacement field of 0.9 V nm(-1).

18.
ACS Appl Mater Interfaces ; 8(7): 5002-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26820099

ABSTRACT

Despite the number of existing studies that showcase the promising application of fluorinated graphene in nanoelectronics, the impact of the fluorine bonding nature on the relevant electrical behaviors of graphene devices, especially at low fluorine content, remains to be experimentally explored. Using CF4 as the fluorinating agent, we studied the gradual structural evolution of chemical vapor deposition graphene fluorinated by CF4 plasma at a working pressure of 700 mTorr using Raman and X-ray photoelectron spectroscopy (XPS). After 10 s of fluorination, our XPS analysis revealed a co-presence of covalently and ionically bonded fluorine components; the latter has been determined being a dominant contribution to the observation of two Dirac points in the relevant electrical measurement using graphene field effect transistor devices. Additionally, this ionic C-F component (ionic bonding characteristic charge sharing) is found to be present only at low fluorine content; continuous fluorination led to a complete transition to a covalently bonded C-F structure and a dramatic increase of graphene sheet resistance. Owing to the formation of these various C-F bonding components, our temperature-dependent Raman mapping studies show an inhomogeneous defluorination from annealing temperatures starting at ∼150 °C for low fluorine coverage, whereas fully fluorinated graphene is thermally stable up to ∼300 °C.

19.
ACS Nano ; 9(9): 9124-33, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26301428

ABSTRACT

Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication.

20.
ACS Appl Mater Interfaces ; 7(22): 11921-9, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25980312

ABSTRACT

Transition metal dichalcogenides (TMDs) are being considered for a variety of electronic and optoelectronic devices such as beyond complementary metal-oxide-semiconductor (CMOS) switches, light-emitting diodes, solar cells, as well as sensors, among others. Molybdenum disulfide (MoS2) is the most studied of the TMDs in part because of its availability in the natural or geological form. The performance of most devices is strongly affected by the intrinsic defects in geological MoS2. Indeed, most sources of current transition metal dichalcogenides have defects, including many impurities. The variability in the electrical properties of MoS2 across the surface of the same crystal has been shown to be correlated with local variations in stoichiometry as well as metallic-like and structural defects. The presence of impurities has also been suggested to play a role in determining the Fermi level in MoS2. The main focus of this work is to highlight a number of intrinsic defects detected on natural, exfoliated MoS2 crystals from two different sources that have been often used in previous reports for device fabrication. We employed room temperature scanning tunneling microscopy (STM) and spectroscopy (STS), inductively coupled plasma mass spectrometry (ICPMS), as well as X-ray photoelectron spectroscopy (XPS) to study the pristine surface of MoS2(0001) immediately after exfoliation. ICPMS used to measure the concentration of impurity elements can in part explain the local contrast behavior observed in STM images. This work highlights that the high concentration of surface defects and impurity atoms may explain the variability observed in the electrical and physical characteristics of MoS2.

SELECTION OF CITATIONS
SEARCH DETAIL
...