Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Eur J Clin Invest ; : e14259, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845111

ABSTRACT

BACKGROUND: The commonest echocardiographic measurement, left ventricular ejection fraction, can not necessarily predict mortality of recipients following heart transplantation potentially due to afterload dependency. Afterload-independent left ventricular stroke work index (LVSWI) is alternatively recommended by the current guideline; however, pulmonary artery catheters are rarely inserted in organ donors in most jurisdictions. We propose a novel non-invasive echocardiographic parameter, Pressure-Strain Product (PSP), as a potential surrogate of catheter-based LVSWI. This study aimed to investigate if PSP could correlate with catheter-based LVSWI in an ovine model of brain stem death (BSD) donors. The association between PSP and myocardial mitochondrial function in the post-transplant hearts was also evaluated. METHODS: Thirty-one female sheep (weight 47 ± 5 kg) were divided into two groups; BSD (n = 15), and sham neurologic injury (n = 16). Echocardiographic parameters including global circumferential strain (GCS) and global radial strain (GRS) and pulmonary artery catheter-based LVSWI were simultaneously measured at 8-timepoints during 24-h observation. PSP was calculated as a product of GCS or GRS, and mean arterial pressure for PSPcirc or PSPrad, respectively. Myocardial mitochondrial function was evaluated following 6-h observation after heart transplantation. RESULTS: In BSD donor hearts, PSPcirc (n = 96, rho = .547, p < .001) showed the best correlation with LVSWI among other echocardiographic parameters. PSPcirc returned AUC of .825 to distinguish higher values of cardiomyocyte mitochondrial function (cut-off point; mean value of complex 1,2 O2 Flux) in post-transplant hearts, which was greater than other echocardiographic parameters. CONCLUSIONS: PSPcirc could be used as a surrogate of catheter-based LVSWI reflecting mitochondrial function.

2.
Sci Rep ; 14(1): 9771, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684823

ABSTRACT

Transpulmonary pressure can be estimated using esophageal balloon (EB) catheters, which come in a variety of manufacturing configurations. We assessed the performance of novel polyurethane EB designs, Aspisafe NG and NG+, against existing alternatives. We created a biomechanical model of the chest cavity using a plastic chamber and an ex-vivo porcine esophagus. The chamber was pressurized (- 20 and + 20 cmH2O) to simulate pleural pressures. We conducted tests with various EB inflation volumes and measured transesophageal pressure (TEP). TEP measurement was defined as accurate when the difference between pressure within the EB and chamber was 0 ± 1 cmH2O. We computed the minimal (Vaccuracy-min) and maximal (Vaccuracy-max) EB inflation volumes of accuracy. Inflation volumes were further validated using a surrogate method derived by the clinically validated positive pressure occlusion test (PPOT). When the esophageal balloons were filled with inflation volumes within the range provided by the manufacturers, the accuracy of TEP measurements was marginal. Our tests found median Vaccuracy-min across EB of 0.00-0.50 mL (p = 0.130), whereas Vaccuracy-max ranged 0.50-2.25 mL (p = 0.002). Post PPOT validation, median TEP was - 0.4 cmH2O (- 1.5 to 0.3) (p < 0.001 among catheters). The Aspisafe NG and NG+ were accurate in 81.7% and 77.8% of the measurements, respectively. We characterized two new EBs, which demonstrated good benchtop accuracy in TEP measurements. However, accuracy was notably influenced by the precise selection of EB inflation volumes.


Subject(s)
Catheters , Esophagus , Pressure , Thoracic Cavity , Animals , Esophagus/physiology , Swine , Biomechanical Phenomena , Polyurethanes/chemistry , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
3.
Sci Rep ; 14(1): 2162, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272980

ABSTRACT

Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.


Subject(s)
Lipopolysaccharides , Respiratory Distress Syndrome , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Oleic Acid/pharmacology , Phenotype , Respiratory Distress Syndrome/pathology , Sheep , Sheep, Domestic , Tomography
4.
J Intensive Care Med ; 39(5): 420-428, 2024 May.
Article in English | MEDLINE | ID: mdl-37926984

ABSTRACT

Purpose: This study aimed to investigate the effects of inspired oxygen fraction (FiO2) and positive end-expiratory pressure (PEEP) on gas exchange in mechanically ventilated patients with COVID-19. Methods: Two FiO2 (100%, 40%) were tested at 3 decreasing levels of PEEP (15, 10, and 5 cmH2O). At each FiO2 and PEEP, gas exchange, respiratory mechanics, hemodynamics, and the distribution of ventilation and perfusion were assessed with electrical impedance tomography. The impact of FiO2 on the intrapulmonary shunt (delta shunt) was analyzed as the difference between the calculated shunt at FiO2 100% (shunt) and venous admixture at FiO2 40% (venous admixture). Results: Fourteen patients were studied. Decreasing PEEP from 15 to 10 cmH2O did not change shunt (24 [21-28] vs 27 [24-29]%) or venous admixture (18 [15-26] vs 23 [18-34]%) while partial pressure of arterial oxygen (FiO2 100%) was higher at PEEP 15 (262 [198-338] vs 256 [147-315] mmHg; P < .05). Instead when PEEP was decreased from 10 to 5 cmH2O, shunt increased to 36 [30-39]% (P < .05) and venous admixture increased to 33 [30-43]% (P < .05) and partial pressure of arterial oxygen (100%) decreased to 109 [76-177] mmHg (P < .05). At PEEP 15, administration of 100% FiO2 resulted in a shunt greater than venous admixture at 40% FiO2, ((24 [21-28] vs 18 [15-26]%, P = .005), delta shunt 5.5% (2.3-8.8)). Compared to PEEP 10, PEEP of 5 and 15 cmH2O resulted in decreased global and pixel-level compliance. Cardiac output at FiO2 100% resulted higher at PEEP 5 (5.4 [4.4-6.5]) compared to PEEP 10 (4.8 [4.1-5.5], P < .05) and PEEP 15 cmH2O (4.7 [4.5-5.4], P < .05). Conclusion: In this study, PEEP of 15 cmH2O, despite resulting in the highest oxygenation, was associated with overdistension. PEEP of 5 cmH2O was associated with increased shunt and alveolar collapse. Administration of 100% FiO2 was associated with an increase in intrapulmonary shunt in the setting of high PEEP. Trial registration: NCT05132933.


Subject(s)
COVID-19 , Lung Diseases , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , COVID-19/therapy , Lung/diagnostic imaging , Positive-Pressure Respiration/methods , Respiratory Mechanics , Oxygen
6.
ASAIO J ; 70(3): e49-e52, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37949061

ABSTRACT

Single lung transplantation (LUTX) can be the last therapeutic option for a growing cohort of patients suffering from end-stage respiratory failure. Postoperative ventilatory management of single LUTX recipients is challenged by the coexistence of the diseased native lung and a healthy-but fragile-graft. In this case report, in a single LUTX recipient with idiopathic pulmonary fibrosis, regional ventilation ( ), perfusion ( ), and / matching and subsequent measurement of shunt fraction ( Qs / Qt ) and alveolar dead space ( Vd / Vt ) were obtained by integrating electrical impedance tomography (EIT) with volumetric capnography and pulmonary thermodilution technique. Although the preoperative pulmonary scintigraphy showed predominant right lung perfusion (79.8% vs. 20.2%), the EIT documented the postoperative re-establishment of between the lungs (demonstrating the adequate functioning of vascular anastomoses), the diversion of to the graft and similar global Qs / Qt (17%) and Vd / Vt (29%) between native and graft lung. Electrical impedance tomography mapping allowed regional Qs / Qt and Vd / Vt assessment: the native right lung had a completely deranged distribution of and ( Qs / Qt 25%, Vd / Vt 46%), whereas the graft showed normal coupling of and ( Qs / Qt 8%, Vd / Vt 12%). Electrical impedance tomography may allow noninvasive, repeatable, bedside assessments of the lung / coupling after single LUTX.


Subject(s)
Lung Transplantation , Lung , Humans , Electric Impedance , Lung/diagnostic imaging , Perfusion , Tomography/methods
7.
Sci Rep ; 13(1): 17986, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863994

ABSTRACT

Whilst the presence of 2 subphenotypes among the heterogenous Acute Respiratory Distress Syndrome (ARDS) population is becoming clinically accepted, subphenotype-specific treatment efficacy has yet to be prospectively tested. We investigated anti-inflammatory treatment in different ARDS models in sheep, previously shown similarities to human ARDS subphenotypes, in a preclinical, randomized, blinded study. Thirty anesthetized sheep were studied up to 48 h and randomized into: (a) OA: oleic acid (n = 15) and (b) OA-LPS: oleic acid and subsequent lipopolysaccharide (n = 15) to achieve a PaO2/FiO2 ratio of < 150 mmHg. Then, animals were randomly allocated to receive treatment with methylprednisolone or erythromycin or none. Assessed outcomes were oxygenation, pulmonary mechanics, hemodynamics and survival. All animals reached ARDS. Treatment with methylprednisolone, but not erythromycin, provided the highest therapeutic benefit in Ph2 animals, leading to a significant increase in PaO2/FiO2 ratio by reducing pulmonary edema, dead space ventilation and shunt fraction. Animals treated with methylprednisolone displayed a higher survival up to 48 h than all others. In animals treated with erythromycin, there was no treatment benefit regarding assessed physiological parameters and survival in both phenotypes. Treatment with methylprednisolone improves oxygenation and survival, more so in ovine phenotype 2 which resembles the human hyperinflammatory subphenotype.


Subject(s)
Anti-Inflammatory Agents , Oleic Acid , Respiratory Distress Syndrome , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Erythromycin/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Oleic Acid/therapeutic use , Respiration , Sheep , Random Allocation , Disease Models, Animal
8.
Transplant Proc ; 55(8): 1991-1994, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37537075

ABSTRACT

Hyperammonemia after lung transplantation is a rare but potentially fatal condition. A 59-year-old male patient affected by pulmonary fibrosis underwent an uncomplicated bilateral lung transplant. Fourteen days after the procedure, the patient developed severe encephalopathy caused by elevated serum ammonia levels. Ureaplasma parvum and Mycoplasma hominis were found on bronchial aspirate and urinary samples as well as on pharyngeal and rectal swabs. Despite the initiation of multimodal therapy, brain damage due to hyperosmolarity was so extensive to evolve into brain death. The autopsy revealed glutamine synthetase hypo-expression in the hepatic tissue. The pathophysiology of hyperammonemia syndrome in lung transplant recipients remains unclear. Previous studies have described the presence of disorders of glutamine synthetase, while others considered the infection with urea-splitting microorganisms as a cause of hyperammonemia syndrome. Our report describes the case of a patient who developed hyperammonemia after a lung transplant in which both the aforementioned etiologies were documented. A high level of clinical suspicion for hyperammonemia syndrome should be maintained in lung transplant recipients. Timely recognition and treatment are critical to prevent the potentially dreadful evolution of this severe complication.

9.
J Heart Lung Transplant ; 42(8): 1015-1029, 2023 08.
Article in English | MEDLINE | ID: mdl-37031869

ABSTRACT

BACKGROUND: The global shortage of donor hearts available for transplantation is a major problem for the treatment of end-stage heart failure. The ischemic time for donor hearts using traditional preservation by standard static cold storage (SCS) is limited to approximately 4 hours, beyond which the risk for primary graft dysfunction (PGD) significantly increases. Hypothermic machine perfusion (HMP) of donor hearts has been proposed to safely extend ischemic time without increasing the risk of PGD. METHODS: Using our sheep model of 24 hours brain death (BD) followed by orthotopic heart transplantation (HTx), we examined post-transplant outcomes in recipients following donor heart preservation by HMP for 8 hours, compared to donor heart preservation for 2 hours by either SCS or HMP. RESULTS: Following HTx, all HMP recipients (both 2 hours and 8 hours groups) survived to the end of the study (6 hours after transplantation and successful weaning from cardiopulmonary bypass), required less vasoactive support for hemodynamic stability, and exhibited superior metabolic, fluid status and inflammatory profiles compared to SCS recipients. Contractile function and cardiac damage (troponin I release and histological assessment) was comparable between groups. CONCLUSIONS: Overall, compared to current clinical SCS, recipient outcomes following transplantation are not adversely impacted by extending HMP to 8 hours. These results have important implications for clinical transplantation where longer ischemic times may be required (e.g., complex surgical cases, transport across long distances). Additionally, HMP may allow safe preservation of "marginal" donor hearts that are more susceptible to myocardial injury and facilitate increased utilization of these hearts for transplantation.


Subject(s)
Heart Transplantation , Animals , Sheep , Humans , Organ Preservation/methods , Tissue Donors , Perfusion/methods , Heart
10.
Artif Organs ; 47(7): 1122-1132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36932963

ABSTRACT

OBJECTIVE: Pulsatile-flow veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has shown encouraging results for microcirculation resuscitation and left ventricle unloading in patients with refractory cardiogenic shock. We aimed to comprehensively assess different V-A ECMO parameters and their contribution to hemodynamic energy production and transfer through the device circuit. METHODS: We used the i-cor® ECMO circuit, which composed of Deltastream DP3 diagonal pump and i-cor® console (Xenios AG), the Hilite 7000 membrane oxygenator (Xenios AG), venous and arterial tubing and a 1 L soft venous pseudo-patient reservoir. Four different arterial cannulae (Biomedicus 15 and 17 Fr, Maquet 15 and 17 Fr) were used. For each cannula, 192 different pulsatile modes were investigated by adjusting flow rate, systole/diastole ratio, pulsatile amplitudes and frequency, yielding 784 unique conditions. A dSpace data acquisition system was used to collect flow and pressure data. RESULTS: Increasing flow rates and pulsatile amplitudes were associated with significantly higher hemodynamic energy production (both p < 0.001), while no significant associations were seen while adjusting systole-to-diastole ratio (p = 0.73) or pulsing frequency (p = 0.99). Arterial cannula represents the highest resistance to hemodynamic energy transfer with 32%-59% of total hemodynamic energy generated being lost within, depending on pulsatile flow settings used. CONCLUSIONS: Herein, we presented the first study to compare hemodynamic energy production with all pulsatile ECLS pump settings and their combinations and widely used yet previously unexamined four different arterial ECMO cannula. Only increased flow rate and amplitude increase hemodynamic energy production as single factors, whilst other factors are relevant when combined.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Cannula , Models, Cardiovascular , Equipment Design , Oxygenators, Membrane , Hemodynamics , Pulsatile Flow
11.
Minerva Anestesiol ; 89(9): 773-782, 2023 09.
Article in English | MEDLINE | ID: mdl-36951601

ABSTRACT

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS: Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-ßHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS: The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-ßHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-ßHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-ßHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS: The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.


Subject(s)
Carbon Dioxide , Respiration, Artificial , Animals , Swine , Respiration, Artificial/methods , Sodium Lactate , Hydrochloric Acid , Hydrogen-Ion Concentration , Dialysis Solutions
12.
Sci Rep ; 13(1): 4002, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899029

ABSTRACT

Differential hypoxaemia (DH) is common in patients supported by femoral veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and can cause cerebral hypoxaemia. To date, no models have studied the direct impact of flow on cerebral damage. We investigated the impact of V-A ECMO flow on brain injury in an ovine model of DH. After inducing severe cardiorespiratory failure and providing ECMO support, we randomised six sheep into two groups: low flow (LF) in which ECMO was set at 2.5 L min-1 ensuring that the brain was entirely perfused by the native heart and lungs, and high flow (HF) in which ECMO was set at 4.5 L min-1 ensuring that the brain was at least partially perfused by ECMO. We used invasive (oxygenation tension-PbTO2, and cerebral microdialysis) and non-invasive (near infrared spectroscopy-NIRS) neuromonitoring, and euthanised animals after five hours for histological analysis. Cerebral oxygenation was significantly improved in the HF group as shown by higher PbTO2 levels (+ 215% vs - 58%, p = 0.043) and NIRS (67 ± 5% vs 49 ± 4%, p = 0.003). The HF group showed significantly less severe brain injury than the LF group in terms of neuronal shrinkage, congestion and perivascular oedema (p < 0.0001). Cerebral microdialysis values in the LF group all reached the pathological thresholds, even though no statistical difference was found between the two groups. Differential hypoxaemia can lead to cerebral damage after only a few hours and mandates a thorough neuromonitoring of patients. An increase in ECMO flow was an effective strategy to reduce such damages.


Subject(s)
Brain Injuries , Extracorporeal Membrane Oxygenation , Animals , Brain Injuries/complications , Extracorporeal Membrane Oxygenation/adverse effects , Hypoxia/complications , Models, Theoretical , Sheep , Shock, Cardiogenic/etiology
14.
J Vasc Access ; : 11297298221127760, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36281219

ABSTRACT

BACKGROUND: Peripheral intravenous catheters (PIVCs) are the most commonly used invasive medical device, yet despite best efforts by end-users, PIVCs experience unacceptably high early failure rates. We aimed to design a new PIVC that reduces the early failure rate of in-dwelling PIVCs and we conducted preliminary tests to assess its efficacy and safety in a porcine model of intravenous access. METHODS: We used computer-aided design and simulation to create a PIVC with a ramped tip geometry, which directs the infused fluid away from the vein wall; we called the design the FloRamp™. We created FloRamp prototypes (test device) and tested them against a market-leading device (BD Insyte™; control device) in a highly-controlled setting with five insertion sites per device in four pigs. We measured resistance to infusion and visual infusion phlebitis (VIP) every 6 h and terminated the experiment at 48 h. Veins were harvested for histology and seven pathological markers were assessed. RESULTS: Computer simulations showed that the optimum FloRamp tip reduced maximum endothelial shear stress by 60%, from 12.7 Pa to 5.1 Pa, compared to a typical PIVC tip and improved the infusion dynamics of saline in the blood stream. In the animal study, we found that 2/5 of the control devices were occluded after 24 h, whereas all test devices remained patent and functional. The FloRamp created less resistance to infusion (0.73 ± 0.81 vs 0.47 ± 0.50, p = 0.06) and lower VIP scores (0.60 ± 0.93 vs 0.31 ± 0.70, p = 0.09) than the control device, although neither findings were significantly different. Histopathology revealed that 5/7 of the assessed markers were lower in veins with the FloRamp. CONCLUSIONS: Herein we report preliminary assessment of a novel PIVC design, which could be advantageous in clinical settings through decreased device occlusion and reduced early failure rates.

15.
Metabolites ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888779

ABSTRACT

Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS) remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking some key features as described in the human hyperinflammatory group, we aim to describe protein expression among the two different ovine models. Nine animals on mechanical ventilation were included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2, n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and 24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more pronounced by the factor of time than different injury models of ARDS. A protein signature consisting of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis, proteins involved in the inflammatory and defense response, complement and coagulation cascade, oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.

16.
Artif Organs ; 46(11): 2313-2318, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35747906

ABSTRACT

BACKGROUND: Evaluation of donor lung function relies on the arterial oxygen partial pressure to inspired oxygen fraction ratio (PaO2 /FiO2 ) measurement. Hemodynamic, metabolic derangements, and therapeutic intervention occurring during brain dead observation may influence the evaluation of gas exchange. METHODS: We performed a mathematical analysis to explore the influence of the extrapulmonary determinants on the interpretation of PaO2 /FiO2 in the brain-dead donor and during Ex-Vivo Lung Perfusion (EVLP). RESULTS: High FiO2 and increased mixed venous oxygen saturation, caused by increased delivery and reduced consumption of oxygen, raise the PaO2 /FiO2 despite substantial intrapulmonary shunt. Anemia does not modify the PaO2 /FiO2 -intrapulmonary shunt relationship. During EVLP, the reduced artero-venous difference in oxygen content increases the PaO2 /FiO2 without this corresponding to an optimal graft function, while the reduced perfusate oxygen-carrying capacity linearizes the PaO2 /FiO2 -intrapulmonary shunt relationship. CONCLUSIONS: Adopting PaO2 /FiO2 to evaluate graft suitability for transplantation should account for extrapulmonary factors affecting its interpretation.


Subject(s)
Oxygen , Pulmonary Gas Exchange , Partial Pressure , Blood Gas Analysis , Lung
17.
Respir Res ; 23(1): 171, 2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35754021

ABSTRACT

BACKGROUND: Few data exist on high flow nasal cannula (HFNC) use in patients with acute respiratory failure (ARF) admitted to general wards. RATIONALE AND OBJECTIVES: To retrospectively evaluate feasibility and safety of HFNC in general wards under the intensivist-supervision and after specific training. METHODS: Patients with ARF (dyspnea, respiratory rate-RR > 25/min, 150 < PaO2/FiO2 < 300 mmHg during oxygen therapy) admitted to nine wards of an academic hospital were included. Gas-exchange, RR, and comfort were assessed before HFNC and after 2 and 24 h of application. RESULTS: 150 patients (81 male, age 74 [60-80] years, SOFA 4 [2-4]), 123 with de-novo ARF underwent HFNC with flow 60 L/min [50-60], FiO2 50% [36-50] and temperature 34 °C [31-37]. HFNC was applied a total of 1399 days, with a median duration of 7 [3-11] days. No major adverse events or deaths were reported. HFNC did not affect gas exchange but reduced RR (25-22/min at 2-24 h, p < 0.001), and improved Dyspnea Borg Scale (3-1, p < 0.001) and comfort (3-4, p < 0.001) after 24 h. HFNC failed in 20 patients (19.2%): 3 (2.9%) for intolerance, 14 (13.4%) escalated to NIV/CPAP in the ward, 3 (2.9%) transferred to ICU. Among these, one continued HFNC, while the other 2 were intubated and they both died. Predictors of HFNC failure were higher Charlson's Comorbidity Index (OR 1.29 [1.07-1.55]; p = 0.004), higher APACHE II Score (OR 1.59 [1.09-4.17]; p = 0.003), and cardiac failure as cause of ARF (OR 5.26 [1.36-20.46]; p = 0.02). CONCLUSION: In patients with mild-moderate ARF admitted to general wards, the use of HFNC after an initial training and daily supervision by intensivists was feasible and seemed safe. HFNC was effective in improving comfort, dyspnea, and respiratory rate without effects on gas exchanges. Trial registration This is a single-centre, noninterventional, retrospective analysis of clinical data.


Subject(s)
Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Aged , Cannula , Dyspnea/etiology , Humans , Male , Oxygen , Oxygen Inhalation Therapy/adverse effects , Patients' Rooms , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies
18.
Crit Care Med ; 50(5): e468-e476, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35044966

ABSTRACT

OBJECTIVES: Extracorporeal carbon dioxide removal is used to treat patients suffering from acute respiratory failure. However, the procedure is hampered by the high blood flow required to achieve a significant CO2 clearance. We aimed to develop an ultralow blood flow device to effectively remove CO2 combined with continuous renal replacement therapy (CRRT). DESIGN: Preclinical, proof-of-concept study. SETTING: An extracorporeal circuit where 200 mL/min of blood flowed through a hemofilter connected to a closed-loop dialysate circuit. An ion-exchange resin acidified the dialysate upstream, a membrane lung to increase Pco2 and promote CO2 removal. PATIENTS: Six, 38.7 ± 2.0-kg female pigs. INTERVENTIONS: Different levels of acidification were tested (from 0 to 5 mEq/min). Two l/hr of postdilution CRRT were performed continuously. The respiratory rate was modified at each step to maintain arterial Pco2 at 50 mm Hg. MEASUREMENTS AND MAIN RESULTS: Increasing acidification enhanced CO2 removal efficiency of the membrane lung from 30 ± 5 (0 mEq/min) up to 145 ± 8 mL/min (5 mEq/min), with a 483% increase, representing the 73% ± 7% of the total body CO2 production. Minute ventilation decreased accordingly from 6.5 ± 0.7 to 1.7 ± 0.5 L/min. No major side effects occurred, except for transient tachycardia episodes. As expected from the alveolar gas equation, the natural lung Pao2 dropped at increasing acidification steps, given the high dissociation between the oxygenation and CO2 removal capability of the device, thus Pao2 decreased. CONCLUSIONS: This new extracorporeal ion-exchange resin-based multiple-organ support device proved extremely high efficiency in CO2 removal and continuous renal support in a preclinical setting. Further studies are required before clinical implementation.


Subject(s)
Continuous Renal Replacement Therapy , Animals , Carbon Dioxide , Dialysis Solutions , Female , Humans , Oxygen , Respiration, Artificial/methods , Swine
19.
ASAIO J ; 68(2): 184-189, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33788801

ABSTRACT

Veno-venous extracorporeal membrane oxygenation (vv-ECMO) represents one of the most advanced respiratory support for patients suffering from severe acute respiratory distress syndrome. During vv-ECMO a certain amount of extracorporeal oxygenated blood can flow back from the reinfusion into the drainage cannula without delivering oxygen to the patient. Detection and quantification of this dynamic phenomenon, defined recirculation, are critical to optimize the ECMO efficiency. Our study aimed to measure the recirculation fraction (RF) using a thermodilution technique. We built an in vitro circuit to simulate patients undergoing vv-ECMO (ECMO flow: 1.5, 3, and 4.5 L/min) with different cardiac output, using a recirculation bridge to achieve several known RFs (from 0% to 50%). The RF, computed as the ratio of the area under temperature-time curves (AUC) of the drainage and reinfusion, was significantly related to the set RF (AUC ratio (%) = 0.979 × RF (%) + 0.277%, p < 0.0001), but it was not dependent on tested ECMO and cardiac output values. A Bland-Altman analysis showed an AUC ratio bias (precision) of -0.21% for the overall data. Test-retest reliability showed an intraclass correlation coefficient of 0.993. This study proved the technical feasibility and computation validity of the applied thermodilution technique in computing vv-ECMO RF.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Cannula , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Reproducibility of Results , Respiratory Distress Syndrome/therapy , Thermodilution
20.
Intensive Care Med Exp ; 9(1): 60, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34950993

ABSTRACT

BACKGROUND: Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD. METHODS: BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures. RESULTS: Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. CONCLUSIONS: We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...