Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Imaging Behav ; 10(4): 1137-1147, 2016 12.
Article in English | MEDLINE | ID: mdl-26572144

ABSTRACT

Hand-drawn gray matter regions of interest (ROI) are often used to guide the estimation of white matter tractography, obtained from diffusion-weighted magnetic resonance imaging (DWI), in healthy and in patient populations. However, such ROIs are vulnerable to rater bias of the individual segmenting the ROIs, scan variability, and individual differences in neuroanatomy. In this report, a "majority rule" approach is introduced for ROI segmentation used to guide streamline tractography in white matter structures. DWI of one healthy participant was acquired in ten separate sessions using a 3 T scanner over the course of a month. Four raters identified ROIs within the left hemisphere [Cerebral Peduncle (CPED); Internal Capsule (IC); Hand Portion of the Motor Cortex, or Hand Bump, (HB)] using a group-established standard operating procedure for ROI definition to guide the estimation of streamline tracts within the corticospinal tract (CST). Each rater traced the ROIs twice for each scan session. The overlap of each rater's two ROIs was used to define a representative ROI for each rater. These ROIs were combined to create a "majority rules" ROI, in which the rule requires that each voxel is selected by at least three of four raters. Reproducibility for ROIs and CST segmentations were analyzed with the Dice Similarity Coefficient (DSC). Intra-rater reliability for each ROI was high (DSCs ≥ 0.83). Inter-rater reliability was moderate to adequate (DSC range 0.54-0.75; lowest for IC). Using intersected majority rules ROIs, the resulting CST showed improved overlap (DSC = 0.82) in the estimated streamline tracks for the ten sessions. Despite high intra-rater reliability, there was lower inter-rater reliability consistent with the expectation of rater bias. Employing the majority rules method improved reliability in the overlap of the CST.


Subject(s)
Cerebral Cortex/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , White Matter/diagnostic imaging , Adult , Diffusion Magnetic Resonance Imaging/methods , Functional Laterality , Humans , Male , Observer Variation , Pyramidal Tracts/diagnostic imaging , Reproducibility of Results
2.
Brain Imaging Behav ; 10(2): 533-47, 2016 06.
Article in English | MEDLINE | ID: mdl-26189060

ABSTRACT

This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Adult , Anisotropy , Brain/physiology , Diffusion Magnetic Resonance Imaging/statistics & numerical data , Diffusion Tensor Imaging/statistics & numerical data , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Male , Temporal Lobe/physiology , White Matter/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...