Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 271(Pt 2): 132669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801847

ABSTRACT

The increasing demand for chitin and chitosan is driving research to explore alternative sources to crustaceans. Insects, particularly bioconverters as Hermetia illucens, are promising substitutes as they process food industry waste into valuable molecules, including chitin. Chitosan can be produced by chitin deacetylation: hot deacetylation to obtain a heterogeneous chitosan, the commonly produced, and cold deacetylation to obtain a homogeneous chitosan, not widely available. The two different treatments lead to a different arrangement of the amine and acetyl groups in the chitosan structure, affecting its molecular weight, deacetylation degree, and biological activity. This is the first report on the production and chemical-physical and biological characterization of homogenous chitosan derived from H. illucens larvae, pupal exuviae, and adults. This work, in addition to the report on heterogeneous chitosan by our research group, completes the overview of H. illucens chitosan. The yield values obtained for homogeneous chitosan from pupal exuviae (3 and 7 %) are in the range of insect (2-8 %) and crustaceans (4-15 %) chitosan. The evaluation of the antioxidant activity and antimicrobial properties against Gram-negative (Escherichia coli) and Gram-positive (Micrococcus flavus) bacteria confirmed the great versatility of H. illucens chitosan for biomedical and industrial applications and its suitability as an alternative source to crustaceans.


Subject(s)
Antioxidants , Chitosan , Chitosan/chemistry , Chitosan/pharmacology , Animals , Acetylation , Antioxidants/pharmacology , Antioxidants/chemistry , Larva/drug effects , Diptera , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Weight , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
2.
Foods ; 13(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254579

ABSTRACT

The use of food waste as a rearing substrate to grow insects is an ecofriendly and sustainable alternative to food waste disposal. In the present research, Hermetia illucens prepupae were reared with a standard diet, different food waste-based diets based on vegetables, fruits, and meat, and a mixed one, where the previous three components were present equally. The demineralization and deproteination of the prepupae allowed for the obtainment of chitin that was then deacetylated to produce chitosan. Also, the bleaching of chitosan was attempted for further purification. The yield of the different reactions was investigated, and the infrared spectra of the obtained materials were analyzed to obtain information on the quantity and acetylation degree trend of the chitin and chitosan as a function of the diet. The possibility to slightly modulate the yield and acetylation degree of both biopolymers thanks to the specific diet was enlightened. Interestingly, the standard diet resulted in the highest fraction of chitin having the highest acetylation degree, and in the highest fraction of chitosan having the lowest acetylation degree.

3.
Polymers (Basel) ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139951

ABSTRACT

Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.

4.
J Funct Biomater ; 14(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37998118

ABSTRACT

In this study, we have developed innovative polymer nanocomposites by integrating magnesium-aluminum layered double hydroxide (LDH)-based nanocarriers modified with functional molecules into a fully biobased poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) matrix. These LDH-based hybrid host-guest systems contain bioactive compounds like rosmarinic acid, ferulic acid, and glycyrrhetinic acid, known for their antioxidant, antimicrobial, and anti-inflammatory properties. The bioactive molecules can be gradually released from the nanocarriers over time, allowing for sustained and controlled delivery in various applications, such as active packaging or cosmetics. The morphological analysis of the polymer composites, prepared using a discontinuous mechanical mixer, revealed the presence of macroaggregates and nano-lamellae at the polymer interface. This resulted in an enhanced water vapor permeability compared to the original blend. Furthermore, the migration kinetics of active molecules from the thin films confirmed a controlled release mechanism based on their immobilization within the lamellar system. Scaling-up experiments evaluated the materials' morphology and mechanical and thermal properties. Remarkably, stretching deformation and a higher shear rate during the mixing process enhanced the dispersion and distribution of the nanocarriers, as confirmed by the favorable mechanical properties of the materials.

5.
Pharmaceutics ; 15(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004505

ABSTRACT

More sustainable and smart cosmeceuticals and nutraceuticals are necessary due to the ecological transition. In this study, a pullulan-based water solution containing chitin nanofibril-nano-lignin (CN-LG) complexes that encapsulate fish collagen polypeptide, allantoin and nicotinamide was electrospun onto a nonwoven substrate made of bamboo fibers to obtain a smart nanostructured bilayer system for releasing active molecules onto the skin or other body tissues. Infrared spectroscopy was used to characterize the composition of the bilayer system before and after rapid washing of the sample with distilled water and liquids mimicking physiological fluids. The viability of keratinocytes was studied as well as the antioxidant activity, protective activity towards UV light, metalloproteinase release of aged fibroblasts and the inhibitor activity against collagen degradation. Immunomodulatory tests were performed to investigate the anti-inflammatory activity of the bilayer system as well as its indirect antimicrobial activity. The results indicate that the bilayer system can be used in the production of innovative sustainable cosmeceuticals. In general, the adopted strategy can be extended to several smart treatments for fast release that can be commercialized as solid products, thus avoiding the use of preservatives and water.

6.
Carbohydr Polym ; 310: 120732, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925264

ABSTRACT

The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.


Subject(s)
Phthalic Acids , Tympanic Membrane , Chitin/pharmacology , Tissue Engineering , Polyethylene Terephthalates , Tissue Scaffolds
7.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501453

ABSTRACT

Poly(lactic acid) (PLA) is one of the most promising renewable polymers to be employed to foster ecological and renewable materials in many fields of application. To develop high-performance products, however, the thermal resistance and the impact properties should be improved. At the same time, it is also necessary to consider the end of life through the exploration of property assessment, following reprocessing. In this context the aim of the paper is to develop PLA/PC blends, obtained from recycled materials, in particular scraps from secondary processing, to close the recycling loop. Indeed, the blending of PLA with polycarbonate (PC) was demonstrated to be a successful strategy to improve thermomechanical properties that happens after several work cycles. The correlation between the compositions and properties was then investigated by considering the morphology of the blends; in addition, the reactive extrusions resulting in the formation of a PLA-PC co-polymer were investigated. The materials obtained are then examined by means of a dynamic-mechanical analysis (DMTA) to study the relaxations and transitions.

8.
Polymers (Basel) ; 14(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36501606

ABSTRACT

Chitin nanofibrils (CN) can be obtained from crustaceans and fungal sources and can be used for preparing coatings for bioplastic films, that are fundamental for developing a safe and sustainable biodegradable food packaging. Coatings with different concentrations of CN from shrimps were applied on different bioplastic substrates, like Poly (butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PBSA/PHBV) blend, Polybutylene succinate (PBS), and Polybutylene adipate terephthalate/Poly(lactic acid) (PBAT/PLA) blend, but the adhesion to the substrates was scarce. On the contrary, the fungal-based CN showed a better adhesion. Additionally, it was found that the use of an additive based on oligomeric lactic acid was useful to prepare a coating with an improved adhesion to bioplastics. The gas barrier properties to oxygen and water vapour of coated and un-coated films were measured, revealing an improvement of these properties thanks to applied coatings, especially towards the oxygen. Antimicrobial properties and biodegradation capacity were also evaluated revealing an antibacterial effect of the coatings that did not significantly interfere with their biodegradability. The results are discussed and interpreted considering the correlation between composition and macromolecular structures with the observed functional properties.

9.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015647

ABSTRACT

The present work aims to enhance the use of agricultural byproducts for the production of bio-composites by melt extrusion. It is well known that in the production of such bio-composites, the weak point is the filler-matrix interface, for this reason the adhesion between a polylactic acid (PLA)/poly(butylene succinate)(PBSA) blend and rice and wheat bran platelets was enhanced by a treatment method applied on the fillers using a suitable beeswax. Moreover, the coupling action of beeswax and inorganic fillers (such as talc and calcium carbonate) were investigated to improve the thermo-mechanical properties of the final composites. Through rheological (MFI), morphological (SEM), thermal (TGA, DSC), mechanical (Tensile, Impact), thermomechanical (HDT) characterizations and the application of analytical models, the optimum among the tested formulations was then selected.

10.
Polymers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683945

ABSTRACT

The paper tissue industry is a constantly evolving sector that supplies markets that require products with different specific properties. In order to meet the demand of functional properties, ensuring a green approach at the same time, research on bio-coatings has been very active in recent decades. The attention dedicated to research on functional properties has not been given to the study of the morphological and mechanical properties of the final products. This paper studied the effect of two representative bio-based coatings on paper tissue. Coatings based on chitin nanofibrils or polyphenols were sprayed on paper tissues to provide them, respectively, with antibacterial and antioxidant activity. The chemical structure of the obtained samples was preliminarily compared by ATR-FTIR before and after their application. Coatings were applied on paper tissues and, after drying, their homogeneity was investigated by ATR-FTIR on different surface areas. Antimicrobial and antioxidant properties were found for chitin nanofibrils- and polyphenols-treated paper tissues, respectively. The mechanical properties of treated and untreated paper tissues were studied, considering as a reference the same tissue paper sample treated only with water. Different mechanical tests were performed on tissues, including penetration, tensile, and tearing tests in two perpendicular directions, to consider the anisotropy of the produced tissues for industrial applications. The morphology of uncoated and coated paper tissues was analysed by field emission scanning electron microscopy. Results from mechanical properties evidenced a correlation between morphological and mechanical changes. The addition of polyphenols resulted in a reduction in mechanical resistance, while the addition of chitin enhanced this property. This study evidenced the different effects produced by two novel coatings on paper tissues for personal care in terms of properties and structure.

11.
Sci Rep ; 12(1): 6613, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459772

ABSTRACT

Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.


Subject(s)
Chitosan , Diptera , Animals , Chitin/chemistry , Chitosan/chemistry , Insecta , Larva , Pupa
12.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458003

ABSTRACT

Chitin nanofibrils (CN) and nanolignin (NL) were used to embed active molecules, such as vitamin E, sodium ascorbyl phosphate, lutein, nicotinamide and glycyrrhetinic acid (derived from licorice), in the design of antimicrobial, anti-inflammatory and antioxidant nanostructured chitin nanofibrils-nanolignin (CN-NL) complexes for skin contact products, thus forming CN-NL/M complexes, where M indicates the embedded functional molecule. Nano-silver was also embedded in CN-NL complexes or on chitin nanofibrils to exploit its well-known antimicrobial activity. A powdery product suitable for application was finally obtained by spray-drying the complexes co-formulated with poly(ethylene glycol). The structure and morphology of the complexes was studied using infrared spectroscopy and field emission scanning electron microscopy, while their thermal stability was investigated via thermo-gravimetry. The latter provided criteria for evaluating the suitability of the obtained complexes for subsequent demanding industrial processing, such as, for instance, incorporation into bio-based thermoplastic polymers through conventional melt extrusion. In vitro tests were carried out at different concentrations to assess skin compatibility. The obtained results provided a physical-chemical, morphological and cytocompatibility knowledge platform for the correct selection and further development of such nanomaterials, allowing them to be applied in different products. In particular, chitin nanofibrils and the CN-NL complex containing glycyrrhetinic acid can combine excellent thermal stability and skin compatibility to provide a nanostructured system potentially suitable for industrial applications.

13.
Polymers (Basel) ; 14(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35160603

ABSTRACT

In this work biocomposites based on plasticized poly(lactic acid) (PLA)-poly(butylene succinate-co-adipate) (PBSA) matrix containing wheat bran fiber (a low value by-product of food industry) were investigated. The effect of the bran addition on the mechanical properties is strictly correlated to the fiber-matrix adhesion and several analytical models, based on static and dynamic tests, were applied in order to estimate the interfacial shear strength of the biocomposites. Finally, the essential work of fracture approach was carried out to investigate the effect of the bran addition on composite fracture toughness.

14.
Polymers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883584

ABSTRACT

In this work, two different typologies of hazelnuts shell powders (HSPs) having different granulometric distributions were melt-compounded into poly(lactic acid) (PLA) matrix. Different HSPs concentration (from 20 up to 40 wt.%) were investigated with the aim to obtain final biocomposites with a high filler quantity, acceptable mechanical properties, and good melt fluidity in order to be processable. For the best composition, the scale-up in a semi-industrial extruder was then explored. Good results were achieved for the scaled-up composites; in fact, thanks to the extruder venting system, the residual moisture is efficiently removed, guaranteeing to the final composites improved mechanical and melt fluidity properties, when compared to the lab-scaled composites. Analytical models were also adopted to predict the trend of mechanical properties (in particular, tensile strength), also considering the effect of HSPs sizes and the role of the interfacial adhesion between the fillers and the matrix.

15.
Polymers (Basel) ; 13(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771197

ABSTRACT

The development of new bio-based coating materials to be applied on cellulosic and plastic based substrates, with improved performances compared to currently available products and at the same time with improved sustainable end of life options, is a challenge of our times. Enabling cellulose or bioplastics with proper functional coatings, based on biopolymer and functional materials deriving from agro-food waste streams, will improve their performance, allowing them to effectively replace fossil products in the personal care, tableware and food packaging sectors. To achieve these challenging objectives some molecules can be used in wet or solid coating formulations, e.g., cutin as a hydrophobic water- and grease-repellent coating, polysaccharides such as chitosan-chitin as an antimicrobial coating, and proteins as a gas barrier. This review collects the available knowledge on functional coatings with a focus on the raw materials used and methods of dispersion/application. It considers, in addition, the correlation with the desired final properties of the applied coatings, thus discussing their potential.

16.
Polymers (Basel) ; 13(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577949

ABSTRACT

The present work focused on the research, design, and study of innovative chain extender systems of renewable origin for PLA-based biocomposites, reinforced with wheat bran as filler. The majority of employed chain extender compounds belongs to fossil world, affecting the biodegradability property which characterizes biopolymers. The aim of this work was thus to find promising biobased and sustainable alternatives to provide the same enhancements. According to this objective, epoxidized soybean oil (ESO) was chosen as principal component of the chain extender systems, together with a dicarboxylic acid, malic acid (MA), or succinic acid (SA). The reactivity of the modifier systems was previously studied through thermogravimetric analysis (TGA) and IR spectroscopy, to hypothesize the reaction mechanism in bran-filled blends. Hence, small-scale extrusion was carried out to investigate the effects of ESO/MA and ESO/SA on formulations of different composition (both pure PLA blends and composites). The variation of melt fluidity parameters was analyzed to define the optimized concentration of modifier systems. A comparison between the effects on blends of designed biobased systems and the action of fossil-based Joncryl was performed, to understand if the developed green solutions could represent competitive and efficient substitutes. The modified composites were characterized in terms of mechanical tests, degradation and thermal studies (TGA and DSC), and morphological analysis (SEM), to figure out their main features and to understand their potential in possible industrial applications.

17.
Molecules ; 26(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299649

ABSTRACT

Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources-namely, vegetable (i.e., from fungi), and animal (from crustaceans)-and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.


Subject(s)
Agaricales/chemistry , Cellulose/pharmacology , Chitin/pharmacology , Cosmetics/pharmacology , Dermis/metabolism , Keratinocytes/metabolism , Penaeidae/chemistry , Animals , Cell Line , Cellulose/chemistry , Chitin/chemistry , Cosmetics/chemistry , Humans , Nanostructures
18.
Polymers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34301135

ABSTRACT

In this paper, creep measurements were carried out on poly(lactic acid) (PLA) and its blends with poly(butylene succinate-adipate) (PBSA) to investigate the specific micromechanical behavior of these materials, which are promising for replacing fossil-based plastics in several applications. Two different PBSA contents at 15 and 20 wt.% were investigated, and the binary blends were named 85-15 and 80-20, respectively. Measurements of the volume strain, using an optical extensometer, were carried out with a universal testing machine in creep configuration to determine, accompanied by SEM images, the deformation processes occurring in a biopolymeric blend. With the aim of correlating the creep and the dilatation variation, analytical models were applied for the first time in biopolymeric binary blends. By using an Eyring plot, a significant change in the curves was found, and it coincided with the onset of the cavitation/debonding mechanism. Furthermore, starting from the data of the pure PLA matrix, using the Eyring relationship, an apparent stress concentration factor was calculated for PLA-PBSA systems. From this study, it emerged that the introduction of PBSA particles causes an increment in the apparent stress intensity factor, and this can be ascribed to the lower adhesion between the two biopolymers. Furthermore, as also confirmed by SEM analysis, it was found that debonding was the main micromechanical mechanism responsible for the volume variation under creep configuration; it was found that debonding starts earlier (at a lower stress level) for the 85-15 blend.

19.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916068

ABSTRACT

In the perspective of producing a rigid renewable and environmentally friendly rigid packaging material, two comb-like copolymers of cellulose acetate (AC) and oligo(lactic acid) OLA, feeding different percentages of oligo(lactic acid) segments, were prepared by chemical synthesis in solvent or reactive extrusion in the melt, using a diepoxide as the coupling agent and were used as compatibilizers for poly(lactic acid)/plasticized cellulose acetate PLA/pAC blends. The blends were extruded at 230 °C or 197 °C and a similar compatibilizing behavior was observed for the different compatibilizers. The compatibilizer C1 containing 80 wt% of AC and 14 wt% of OLA resulted effective in compatibilization and it was easily obtained by reactive extrusion. Considering these results, different PLAX/pAC(100-X) compounds containing C1 as the compatibilizer were prepared by extrusion at 197 °C and tested in terms of their tensile and impact properties. Reference materials were the uncompatibilized corresponding blend (PLAX/pAC(100-X)) and the blend of PLA, at the same wt%, with C1. Significant increase in Young's modulus and tensile strength were observed in the compatibilized blends, in dependence of their morphologic features, suggesting the achievement of an improved interfacial adhesion thanks to the occurred compatibilization.

20.
Polymers (Basel) ; 13(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435479

ABSTRACT

In this work poly(lactic) acid (PLA)/poly(butylene succinate-co-adipate) (PBSA) biobased binary blends were investigated. PLA/PBSA mixtures with different compositions of PBSA (from 15 up to 40 wt.%) were produced by twin screw-extrusion. A first screening study was performed on these blends that were characterized from the melt fluidity, morphological and thermo-mechanical point of view. Starting from the obtained results, the effect of an epoxy oligomer (EO) (added at 2 wt.%) was further investigated. In this case a novel approach was introduced studying the micromechanical deformation processes by dilatometric uniaxial tensile tests, carried out with a videoextensometer. The characterization was then completed adopting the elasto-plastic fracture approach, by the measurement of the capability of the selected blends to absorb energy at a slow rate. The obtained results showed that EO acts as a good compatibilizer, improving the compatibility of the rubber phase into the PLA matrix. Dilatometric results showed different micromechanical responses for the 80-20 and 60-40 blends (probably linked to the different morphology). The 80-20 showed a cavitational behavior while the 60-40 a deviatoric one. It has been observed that while the addition of EO does not alter the micromechanical response of the 60-40 blend, it profoundly changes the response of the 80-20, that passed to a deviatoric behavior with the EO addition.

SELECTION OF CITATIONS
SEARCH DETAIL
...