Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zebrafish ; 21(2): 80-91, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37449810

ABSTRACT

Early research experiences positively affect students' interest in STEM careers, and develop practical science and critical thinking skills. However, outreach opportunities are not equally accessible for all students. In states like West Virginia, where many students live in rural Appalachian communities, opportunities for engaging in STEM experiences are limited. In addition, rural teachers may not be equipped to provide authentic research experiences for students due to lack of resources or support. For many students in West Virginia, the Health Sciences and Technology Academy (HSTA) is a major opportunity for STEM engagement. Since its inception in 1998, HSTA has spread to 26 of 55 counties in West Virginia. The program recruits first-generation, low-socioeconomic status, rurally living, and African American high school students who are under-represented in STEM fields. Our research laboratory partnered with HSTA to implement an innovative, hands-on research camp using zebrafish for students participating in their annual junior-level biomedical sciences summer camp. Our camp was held in-person and adapted to an online format during the Covid-19 pandemic. We used pre-post surveys in both camps to assess impacts on science confidence and to collect information about general perceptions of zebrafish, research, and STEM fields. We found that students participating in the in-person and online camps experienced similar overall gains in science confidence. We also identified strong interest in zebrafish, research, and STEM degrees among online students. Online students did not prefer virtual learning experiences; however, they still enjoyed our camp. We also surveyed high school teachers volunteering for HSTA to identify factors that would encourage use of zebrafish in classrooms. The most prominent needs include classroom supplies, experience, and funding. Our successful science-education partnership demonstrates that zebrafish research experiences foster positive outcomes for under-represented students, and can inform future outreach efforts and collaborations with teachers.


Subject(s)
Perciformes , Zebrafish , Animals , Humans , West Virginia , Pandemics , Students , Learning
2.
Dev Dyn ; 252(3): 377-399, 2023 03.
Article in English | MEDLINE | ID: mdl-36184733

ABSTRACT

BACKGROUND: Homeobox transcription factor encoding genes, genomic screen homeobox 1 and 2 (gsx1 and gsx2), are expressed during neurodevelopment in multiple vertebrates. However, we have limited knowledge of the dynamic expression of these genes through developmental time and the gene networks that they regulate in zebrafish. RESULTS: We confirmed that gsx1 is expressed initially in the hindbrain and diencephalon and later in the optic tectum, pretectum, and cerebellar plate. gsx2 is expressed in the early telencephalon and later in the pallium and olfactory bulb. gsx1 and gsx2 are co-expressed in the hypothalamus, preoptic area, and hindbrain, however, rarely co-localize in the same cells. gsx1 and gsx2 mutant zebrafish were made with TALENs. gsx1 mutants exhibit stunted growth, however, they survive to adulthood and are fertile. gsx2 mutants experience swim bladder inflation failure that prevents survival. We also observed significantly reduced expression of multiple forebrain patterning distal-less homeobox genes in mutants, and expression of foxp2 was not significantly affected. CONCLUSIONS: This work provides novel tools with which other target genes and functions of Gsx1 and Gsx2 can be characterized across the central nervous system to better understand the unique and overlapping roles of these highly conserved transcription factors.


Subject(s)
Homeodomain Proteins , Zebrafish , Animals , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Olfactory Bulb/metabolism , Telencephalon/metabolism , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
3.
J Appl Toxicol ; 42(4): 706-714, 2022 04.
Article in English | MEDLINE | ID: mdl-34647333

ABSTRACT

The increased abuse of novel drugs has created a critical need for cheap and rapid in vivo models to understand whole organism drug-induced toxicity and metabolic impacts. One such model is zebrafish, which share many similarities to human. Assays have been developed for behavioral, toxicity, and metabolism elucidation following chemical exposure. The zebrafish model provides the advantage of assessing these parameters within a single study. Previous zebrafish studies have evaluated the behavioral effects of fentanyl, but not developmental toxicity and its relation to metabolism. In this study, we evaluate the effects of fentanyl on the development of wild-type (TL strain) zebrafish and its metabolism over 4 days. Fertilized eggs were exposed to six concentrations of fentanyl (0.01, 0.1, 1, 10, 50, and 100 µM) through embryo media incubated at 28-29°C. Observations included egg coagulation, somite formation, heartbeat, tail and yolk morphology, pericardial formation, and swim bladder inflation. The incubation media was analyzed for the presence of metabolites using a targeted metabolomics approach. Fentanyl concentration caused significant effects on survival and development, with notable defects to the tail, yolk, and pericardium at 50 and 100 µM. Despropionyl fentanyl (4-ANPP), ß-hydroxy fentanyl, and norfentanyl were detected in zebrafish larvae. We present a single in vivo model to assess toxicity and metabolism of fentanyl exposure in a vertebrate model system. Our findings provide a foundation for further investigations into fentanyl's mechanism of action and translation to human drug exposure.


Subject(s)
Fentanyl , Zebrafish , Animals , Embryo, Nonmammalian , Fentanyl/toxicity , Larva , Zygote
SELECTION OF CITATIONS
SEARCH DETAIL
...