Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ISME J ; 14(10): 2554-2567, 2020 10.
Article in English | MEDLINE | ID: mdl-32601480

ABSTRACT

Sponges are the oldest known extant animal-microbe symbiosis. These ubiquitous benthic animals play an important role in marine ecosystems in the cycling of dissolved organic matter (DOM), the largest source of organic matter on Earth. The conventional view on DOM cycling through microbial processing has been challenged by the interaction between this efficient filter-feeding host and its diverse and abundant microbiome. Here we quantify, for the first time, the role of host cells and microbial symbionts in sponge heterotrophy. We combined stable isotope probing and nanoscale secondary ion mass spectrometry to compare the processing of different sources of DOM (glucose, amino acids, algal-produced) and particulate organic matter (POM) by a high-microbial abundance (HMA) and low-microbial abundance (LMA) sponge with single-cell resolution. Contrary to common notion, we found that both microbial symbionts and host choanocyte (i.e. filter) cells and were active in DOM uptake. Although all DOM sources were assimilated by both sponges, higher microbial biomass in the HMA sponge corresponded to an increased capacity to process a greater variety of dissolved compounds. Nevertheless, in situ feeding data demonstrated that DOM was the primary carbon source for both the LMA and HMA sponge, accounting for ~90% of their heterotrophic diets. Microbes accounted for the majority (65-87%) of DOM assimilated by the HMA sponge (and ~60% of its total heterotrophic diet) but <5% in the LMA sponge. We propose that the evolutionary success of sponges is due to their different strategies to exploit the vast reservoir of DOM in the ocean.


Subject(s)
Gastrointestinal Microbiome , Porifera , Animals , Carbon , Heterotrophic Processes , Nitrogen , Symbiosis
2.
Sci Rep ; 9(1): 5911, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976028

ABSTRACT

Stochastic perturbations can trigger major ecosystem shifts. Marine systems have been severely affected in recent years by mass mortality events related to positive thermal anomalies. Although the immediate effects in the species demography affected by mortality events are well known, information on the mid- to long-term effects at the community level is much less documented. Here, we show how an extreme warming event replaces a structurally complex habitat, dominated by long-lived species, by a simplified habitat (lower species diversity and richness) dominated by turf-forming species. On the basis of a study involving the experimental manipulation of the presence of the gorgonian Paramuricea clavata, we observed that its presence mitigated the effects of warming by maintaining the original assemblage dominated by macroinvertebrates and delaying the proliferation and spread of the invasive alga Caulerpa cylindracea. However, due to the increase of sediment and turf-forming species after the mortality event we hypothesize a further degradation of the whole assemblage as both factors decrease the recruitment of P.clavata, decrease the survival of encrusting coralligenous-dwelling macroinvertebrates and facilitate the spreading of C. cylindracea.


Subject(s)
Anthozoa/growth & development , Biodiversity , Bioengineering , Caulerpa/pathogenicity , Hot Temperature , Longevity , Population Dynamics , Animals , Anthozoa/microbiology , Mediterranean Sea
3.
Front Physiol ; 10: 1474, 2019.
Article in English | MEDLINE | ID: mdl-31920688

ABSTRACT

Sponges play an important ecological function in many benthic habitats. They filter large volumes of water, retain suspended particles with high efficiency, and process dissolved compounds. Nevertheless, the factors that regulate sponge pumping rate and its relation to environmental factors have been rarely studied. We examined, in situ, the variation of pumping rates for five Mediterranean sponge species and its relationship to temperature, particulate food abundance and sponge size over two annual cycles. Surprisingly, temperature and food concentration had only a small effect on pumping rates, and the seasonal variation of pumping rates was small (1.9-2.5 folds). Sponge size was the main determinant of the specific pumping rate (pumping normalized to sponge volume or mass). Within the natural size distribution of each species, the volume-specific pumping rate [PR V , ml min-1 (cm sponge)-3] decreased (up to 33 folds) with the increase in sponge volume (V, cm3), conforming to an allometric power function (PR V = aVb ) with negative exponents. The strong dependence of the size-specific pumping rate on the sponge size suggests that the simplistic use of this value to categorize sponge species and predict their activity may be misleading. For example, for small specimens, size-specific pumping rates of the two low-microbial-abundance (LMA) species (allometric exponent b of -0.2 and -0.3) were similar to those of two of the high-microbial-abundance (HMA) species (b of -0.5 and -0.7). However, for larger specimens, size-specific pumping rates were markedly different. Our results suggest that the pumping rate of the sponges we studied can be approximated using the measured allometric constants alone in conjunction with surveys of sponge abundance and size distribution. This information is essential for the quantification of in situ feeding and respiration rates and for estimates of the magnitude of sponge-mediated energy and nutrient fluxes at the community level. Further work is required to establish if and to what extent the low seasonal effect and the strong size dependency of pumping rate can be generalized to other sponges and habitats.

4.
Sci Total Environ ; 634: 1580-1592, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710655

ABSTRACT

Marine ecosystems are threatened by cumulative human-related impacts that cause structural and functional alterations. In the Mediterranean Sea, the zooxanthellate coral Oculina patagonica (Scleractinia, Oculinidae) can turn algal forests into coral-dominated ecosystems and provides a case study for examining how zooxanthellate corals can affect the structure of algal-dominated shallow-water rocky ecosystems in temperate areas. Our goal was to provide a quantitative baseline assessment of O. patagonica demographics along ~1300km of the Mediterranean Iberian coast and relate them to environmental parameters. The highest coral success was in the South Balearic Sea zone, where the populations exhibited >6-fold higher mean living coral cover, lower partial colony mortality and colony size distributions indicating that the populations in this zone were growing faster than those in the peripheral south-west (North Alborán Sea) and north-east (Mid and North Balearic Sea, and West Gulf of Lyons) zones. The coral demographics (i.e., density, cover, and skewness and kurtosis coefficients of colony size distributions) were positively correlated with each other and the annual mean seawater temperature (ST), 10th-ST percentile (P10th-ST), 90th-ST percentile (P90th-ST) and photosynthetically active radiation at 3-m depth (PAR-3m), but they were negatively correlated with chlorophyll-a. Based on these results, we identified the following thresholds that may constrain the growth of O. patagonica colonies and populations: annual mean ST <19-20°C, P10th-ST <14°C, P90th-ST <25°C and >27°C, and PAR-3m <30molphotonsm-2day-1. The species abundance along the Iberian coast conforms to the abundant-center pattern of distribution. However, the coral demographics indicated that this pattern was not only related to the time of establishment but also to differences in coral population growth, which were correlated with key environmental parameters. Our results contribute understanding of the forces driving population growth of O. patagonica and support the hypothesis of an ongoing coral-mediated tropicalization of macroalgae-dominated temperate ecosystems.

5.
Mol Ecol ; 27(11): 2529-2543, 2018 06.
Article in English | MEDLINE | ID: mdl-29693297

ABSTRACT

Many organisms are expanding their ranges in response to changing environmental conditions. Understanding the patterns of genetic diversity and adaptation along an expansion front is crucial to assessing a species' long-term success. While next-generation sequencing techniques can reveal these changes in fine detail, ascribing them to a particular species can be difficult for organisms that live in close association with symbionts. Using a novel modified restriction site-associated DNA sequencing (RAD-Seq) protocol to target coral DNA, we collected 595 coral-specific single nucleotide polymorphisms from 189 colonies of the invasive coral Oculina patagonica from the Spanish Mediterranean coast, including established core populations and two expansion fronts. Surprisingly, populations from the recent northern expansion are genetically distinct from the westward expansion and core populations and also harbour greater genetic diversity. We found that temperature may have driven adaptation along the northern expansion, as genome scans for selection found three candidate loci associated with temperature in the north but none in the west. We found no genomic signature of selection associated with artificial substrate, which has been proposed for explaining the rapid spread of O. patagonica. This suggests that this coral is simply an opportunistic colonizer of free space made available by coastal habitat modifications. Our results suggest that unique genetic variation, possibly due to limited dispersal across the Ibiza Channel, an influx of individuals from different depths and/or adaptation to cooler temperatures along the northern expansion front may have facilitated the northward range expansion of O. patagonica in the western Mediterranean.


Subject(s)
Adaptation, Physiological/genetics , Anthozoa/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Ecosystem , Seawater , Sequence Analysis, DNA/methods , Spain , Temperature
6.
J Vis Exp ; (114)2016 08 03.
Article in English | MEDLINE | ID: mdl-27585354

ABSTRACT

Benthic suspension feeders play essential roles in the functioning of marine ecosystems. By filtering large volumes of water, removing plankton and detritus, and excreting particulate and dissolved compounds, they serve as important agents for benthic-pelagic coupling. Accurately measuring the compounds removed and excreted by suspension feeders (such as sponges, ascidians, polychaetes, bivalves) is crucial for the study of their physiology, metabolism, and feeding ecology, and is fundamental to determine the ecological relevance of the nutrient fluxes mediated by these organisms. However, the assessment of the rate by which suspension feeders process particulate and dissolved compounds in nature is restricted by the limitations of the currently available methodologies. Our goal was to develop a simple, reliable, and non-intrusive method that would allow clean and controlled water sampling from a specific point, such as the excurrent aperture of benthic suspension feeders, in situ. Our method allows simultaneous sampling of inhaled and exhaled water of the studied organism by using minute tubes installed on a custom-built manipulator device and carefully positioned inside the exhalant orifice of the sampled organism. Piercing a septum on the collecting vessel with a syringe needle attached to the distal end of each tube allows the external pressure to slowly force the sampled water into the vessel through the sampling tube. The slow and controlled sampling rate allows integrating the inherent patchiness in the water while ensuring contamination free sampling. We provide recommendations for the most suitable filtering devices, collection vessel, and storing procedures for the analyses of different particulate and dissolved compounds. The VacuSIP system offers a reliable method for the quantification of undisturbed suspension feeder metabolism in natural conditions that is cheap and easy to learn and apply to assess the physiology and functional role of filter feeders in different ecosystems.


Subject(s)
Ecosystem , Oceans and Seas , Porifera/metabolism , Animals , Ecology , Plankton , Suspensions , Water
7.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Article in English | MEDLINE | ID: mdl-26405300

ABSTRACT

Marine sponges host bacterial communities with important ecological and economic roles in nature and society, yet these benefits depend largely on the stability of host-symbiont interactions and their susceptibility to changing environmental conditions. Here, we investigated the temporal stability of complex host-microbe symbioses in a temperate, seasonal environment over three years, targeting sponges across a range of symbiont density (high and low microbial abundance, HMA and LMA) and host taxonomy (six orders). Symbiont profiling by terminal restriction fragment length polymorphism analysis of 16S rRNA gene sequences revealed that bacterial communities in all sponges exhibited a high degree of host specificity, low seasonal dynamics and low interannual variability: results that represent an emerging trend in the field of sponge microbiology and contrast sharply with the seasonal dynamics of free-living bacterioplankton. Further, HMA sponges hosted more diverse, even and similar symbiont communities than LMA sponges and these differences in community structure extended to core members of the microbiome. Together, these findings show clear distinctions in symbiont structure between HMA and LMA sponges while resolving notable similarities in their stability over seasonal and inter-annual scales, thus providing insight into the ecological consequences of the HMA-LMA dichotomy and the temporal stability of complex host-microbe symbioses.


Subject(s)
Bacteria/genetics , Microbiota/physiology , Porifera/microbiology , Seasons , Symbiosis/physiology , Animals , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics
8.
Appl Environ Microbiol ; 81(17): 5683-93, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26070678

ABSTRACT

Microbial communities associated with marine sponges carry out nutrient transformations essential for benthic-pelagic coupling; however, knowledge about their composition and function is still sparse. We evaluated the richness and diversity of prokaryotic assemblages associated with three high-microbial-abundance (HMA) and three low-microbial-abundance (LMA) sympatric Mediterranean sponges to address their stability and uniqueness. Moreover, to examine functionality and because an imbalance between nitrogen ingestion and excretion has been observed for some of these species, we sequenced nitrogenase genes (nifH) and measured N2 fixation. The prokaryotic communities in the two sponge types did not differ in terms of richness, but the highest diversity was found in HMA sponges. Moreover, the discrete composition of the communities in the two sponge types relative to that in the surrounding seawater indicated that horizontal transmission and vertical transmission affect the microbiomes associated with the two sponge categories. nifH genes were found in all LMA species and sporadically in one HMA species, and about half of the nifH gene sequences were common between the different sponge species and were also found in the surrounding water, suggesting horizontal transmission. (15)N2-enriched incubations showed that N2 fixation was measurable in the water but was not associated with the sponges. Also, the analysis of the isotopic ratio of (15)N to (14)N in sponge tissue indicated that N2 fixation is not an important source of nitrogen in these Mediterranean sponges. Overall, our results suggest that compositional and functional features differ between the prokaryotic communities associated with HMA and LMA sponges, which may affect sponge ecology.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Porifera/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mediterranean Sea , Microbiota , Molecular Sequence Data , Nitrogen/metabolism , Nitrogen Fixation , Nitrogenase/genetics , Nitrogenase/metabolism , Phylogeny , Porifera/classification , Porifera/metabolism
9.
Ecol Evol ; 3(6): 1765-79, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23789084

ABSTRACT

Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.

10.
PLoS One ; 8(1): e52739, 2013.
Article in English | MEDLINE | ID: mdl-23341904

ABSTRACT

The hermatypic coral Oculina patagonica can drive a compositional shift in shallow water benthic marine communities in the northwestern Mediterranean. Here, we analyze a long-term, large-scale observational dataset to characterize the dynamics of the species' recent northward range shift along the coast of Catalonia and examine the main factors that could have influenced this spread. The variation in the distributional range of Oculina patagonica was examined by monitoring 223 locations including natural and artificial habitats along >400 km of coastline over the last 19 years (1992-2010). Abundance of the species increased from being present in one location in 1992 to occur on 19% of the locations in 2010, and exhibited an acceleration of its spreading over time driven by the join action of neighborhood and long-distance dispersal. However, the pattern of spread diverged between artificial and natural habitats. A short lag phase and a high slope on the exponential phase characterized the temporal pattern of spread on artificial habitats in contrast to that observed on natural ones. Northward expansion has occurred at the fastest rate (22 km year(-1)) reported for a coral species thus far, which is sufficiently fast to cope with certain climate warming predictions. The pattern of spread suggests that this process is mediated by the interplay of (i) the availability of open space provided by artificial habitats, (ii) the seawater temperature increase with the subsequent extension of the growth period, and (iii) the particular biological features of O. patagonica (current high growth rates, early reproduction, and survival to low temperature and in polluted areas). These results are indicative of an ongoing fundamental modification of temperate shallow water assemblages, which is consistent with the predictions indicating that the Mediterranean Sea is one of the most sensitive regions to global change.


Subject(s)
Animal Migration/physiology , Anthozoa/physiology , Seawater , Temperature , Animals , Geography , Mediterranean Sea , Population Dynamics , Satellite Communications , Species Specificity , Time Factors
11.
Ecology ; 94(12): 2781-91, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24597224

ABSTRACT

Microbes are known to form intricate and intimate relationships with most animal and plant taxa. Microbe--host symbiotic associations are poorly explored in comparison with other species interaction networks. The current paradigm on symbiosis research stems from species-poor systems where pairwise and reciprocally specialized interactions between a single microbe and a single host that coevolve are the norm. These symbioses involving just a few species are fascinating in their own right, but more diverse and complex host-associated microbial communities are increasingly found, with new emerging questions that require new paradigms and approaches. Here we adopt an intermediate complexity approach to study the specificity, phylogenetic community structure, and temporal variability of the subset of the most abundant bacteria associated with different sponge host species with diverse eco-evolutionary characteristics. We do so by using a monthly resolved annual temporal series of host-associated and free-living bacteria. Bacteria are very abundant and diverse within marine sponges, and these symbiotic interactions are hypothesized to have a very ancient origin. We show that host-bacteria reciprocal specialization depends on the temporal scale and level of taxonomic aggregation considered. Sponge hosts with similar eco-evolutionary characteristics (e.g., volume of tissue corresponding to microbes, water filtering rates, and microbial transmission type) have similar bacterial phylogenetic community structure when looking at interactions aggregated over time. In general, sponge hosts hypothesized to form more intricate relationships with bacteria show a remarkably persistent bacterial community over time. Other hosts, however, show a large turnover similar to that observed for free-living bacterioplankton. Our study highlights the importance of exploring temporal variability in host--microbe interaction networks if we aim to determine how specific and persistent these poorly explored but extremely common interactions are.


Subject(s)
Bacteria/classification , Porifera/microbiology , Symbiosis , Animals , Ecosystem , Mediterranean Sea , Phylogeny , Time Factors
12.
PLoS One ; 6(7): e22017, 2011.
Article in English | MEDLINE | ID: mdl-21789204

ABSTRACT

Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources , Introduced Species , Predatory Behavior/physiology , Sea Urchins/physiology , Seawater , Analysis of Variance , Animals , Biomass , Geography , Population Dynamics , Spain , Time Factors
13.
Proc Natl Acad Sci U S A ; 106(15): 6176-81, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19332777

ABSTRACT

Summer conditions in the Mediterranean Sea are characterized by high temperatures and low food availability. This leads to "summer dormancy" in many benthic suspension feeders due to energetic constraints. Analysis of the most recent 33-year temperature time series demonstrated enhanced stratification due to global warming, which produced a approximately 40% lengthening of summer conditions. Many biological processes are expected to be affected by this trend, culminating in such events as mass mortality of invertebrates. Climatic anomalies concomitant with the occurrence of these events represent prolonged exposure to warmer summer conditions coupled with reduced food resources. Simulation of the effects of these conditions on a model organism demonstrated a biomass loss of >35%. Losses of this magnitude result in mortality similar to that noted in field observations during mass mortality events. These results indicate that temperature anomalies are the underlying cause of the events, with energetic constraints serving as the main triggering mechanism.


Subject(s)
Biomass , Ecosystem , Greenhouse Effect , Animals , Cnidaria , Mediterranean Sea , Models, Biological , Temperature , Time Factors
14.
Ecology ; 88(4): 918-28, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17536708

ABSTRACT

The red gorgonian Paramuricea clavata is a long-lived, slow-growing sessile invertebrate of ecological and conservation importance in the northwestern Mediterranean Sea. We develop a series of size-based matrix models for two Paramuricea clavata populations. These models were used to estimate basic life history traits for this species and to evaluate the viability of the red gorgonian populations we studied. As for many other slow-growing species, sensitivity and elasticity analysis demonstrate that gorgonian population growth is far more sensitive to changes in survival rates than to growth, shrinkage, or reproductive rates. The slow growth and low mortality of red gorgonians results in low damping ratios, indicating slow convergence to stable size structures (at least 50 years). The stable distributions predicted by the model did not differ from the observed ones. However, our simulations point out the fragility of this species, showing both populations in decline and high risk of extinction over moderate time horizons. These declines appear to be related to a recent increase in anthropogenic disturbances. Relative to their life span, the values of recruitment elasticity for Paramuricea clavata are lower than those reported for other marine organisms but are similar to those reported for some long-lived plants. These values and the delayed age of sexual maturity, in combination with the longevity of the species, show a clear fecundity/mortality trade-off. Full demographic studies of sessile marine species are quite scarce but can provide insight into population dynamics and life history patterns for these difficult and under-studied species. While our work shows clear results for the red gorgonian, the variability in some of our estimates suggest that future work should include data collection over longer temporal and spatial scales to better understand the long-term effects of natural and anthropogenic disturbances on red gorgonian populations.


Subject(s)
Cnidaria/physiology , Conservation of Natural Resources , Ecosystem , Models, Biological , Reproduction/physiology , Animals , Cnidaria/growth & development , Longevity , Marine Biology , Mortality , Population Dynamics , Population Growth , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...