Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biochimie ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663457

ABSTRACT

TSPO is a ubiquitous transmembrane protein used as a pharmacological marker in neuroimaging. The only known atomic structure of mammalian TSPOs comes from the solution NMR of mouse TSPO (mTSPO) bound to the PK11195 ligand and in a DPC surfactant environment. No structure is available in a biomimetic environment and without PK11195 which strongly stiffens the protein. We measured the effect of different amphiphilic environments on ligand-free mTSPO to study its structure/function and find optimal solubilization conditions. By replacing the SDS surfactant, where the recombinant protein is purified, with mixed lipid:surfactant (DMPC:DPC) micelles at different ratios (0:1, 1:2, and 2:1, w:w), the α-helix content and interactions and the intrinsic tryptophan (Trp) fluorescence of mTSPO are gradually increased. Small-angle X-ray scattering (SAXS) shows a more extended mTSPO/belt complex with the addition of lipids: Dmax ∼95 Å in DPC alone versus ∼142 Å in DMPC:DPC (1:2). SEC-MALLS shows that the molecular composition of the mTSPO belt is ∼98 molecules for DPC alone and ∼58 DMPC and ∼175 DPC for DMPC:DPC (1:2). Additionally, DMPC:DPC micelles stabilize mTSPO compared to DPC alone, where the protein has a greater propensity to aggregate. These structural changes are consistent with the increased affinity of mTSPO for the PK11195 ligand in presence of lipids (Kd ∼70 µM in DPC alone versus ∼0.91 µM in DMPC:DPC, 1:2), as measured by microscale thermophoresis (MST). In conclusion, mixed lipid:surfactant micelles open new possibilities for the stabilization of membrane proteins and for their study in solution in a more biomimetic amphiphilic environment.

2.
Langmuir ; 40(13): 6847-6861, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501650

ABSTRACT

The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.


Subject(s)
Polymyxin B , Pulmonary Surfactants , Polymyxin B/pharmacology , Polymyxin B/chemistry , Scattering, Small Angle , Lipid Bilayers , X-Ray Diffraction , Surface-Active Agents , Thermodynamics , Lung/metabolism
3.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474237

ABSTRACT

The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.


Subject(s)
Pulmonary Surfactants , Budesonide , Scattering, Small Angle , X-Ray Diffraction , Thermodynamics , Lipid Bilayers/chemistry , Calorimetry, Differential Scanning , Lung , Surface-Active Agents
4.
Sci Rep ; 13(1): 19036, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923897

ABSTRACT

To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.


Subject(s)
Amino Acids , Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/metabolism , Molecular Chaperones/metabolism , Membrane Fluidity
5.
Int J Biol Macromol ; 245: 125549, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37356686

ABSTRACT

Apomyoglobin (apoMb), a model protein in biochemistry, exhibits a strong propensity to bind various ligands, which makes it a good candidate as a carrier of bioactive hydrophobic drugs. The stability of its hydrophobic pocket determines its potential as a carrier of bioactive compounds. High pressure (HP) is a potent tool for studying protein stability, revealing the specific role of hydrophobic cavities in unfolding. We probed the effects of biliverdin (BV) binding and its complex with Zn2+ ions on the structure and HP stability of apoMb. CD spectroscopy and SAXS measurements revealed that BV and BV-Zn2+ complexes make the apoMb structure more compact with higher α-helical content. We performed in situ HP measurements of apoMb intrinsic fluorescence to demonstrate the ability of BV to stabilise apoMb structure at HP conditions. Furthermore, the presence of Zn2+ within the apoMb-BV complex significantly enhances the BV stabilisation effect. In situ visible absorption study of BV chromophore confirmed the ability of Zn2+ to increase the stability of apoMb-BV complex under HP: the onset of complex dissociation is shifted by ∼100 MPa in presence of Zn2+. By combining HP-fluorescence and HP-visible absorption spectroscopy, our strategy highlights the crucial role of tetrapyrrole-metal complexes in stabilising apoMb hydrophobic pocket.


Subject(s)
Biliverdine , Myoglobin , Biliverdine/pharmacology , Scattering, Small Angle , X-Ray Diffraction , Myoglobin/chemistry , Apoproteins/chemistry , Ions , Zinc/pharmacology
6.
Food Chem ; 426: 136669, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37352716

ABSTRACT

This study aimed to purify, characterise and stabilise the natural food colourant, R-phycocyanin (R-PC), from the red algae Porphyra spp. (Nori). We purified R-PC from dried Nori flakes with a high purity ratio (A618/A280 ≥ 3.4) in native form (α-helix content 53%). SAXS measurements revealed that R-PC is trimeric ((αß)3) in solution. The thermal denaturation of α-helix revealed one transition (Tm at 52 °C), while the pH stability study showed R-PC is stable in the pH range 4-8. The thermal treatment of R-PC at 60 °C has detrimental and irreversible effects on R-PC colour and antioxidant capacity (22 % of residual capacity). However, immobilisation of R-PC within calcium alginate beads completely preserves R-PC colour and mainly retains its antioxidant ability (78 % of residual capacity). Results give new insights into the stability of R-PC and preservation of its purple colour and bioactivity by encapsulation in calcium alginate beads.


Subject(s)
Food Coloring Agents , Porphyra , Phycocyanin/chemistry , Porphyra/chemistry , Antioxidants , Scattering, Small Angle , X-Ray Diffraction , Vegetables
7.
Biochimie ; 205: 61-72, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460205

ABSTRACT

The translocator protein (TSPO) is a ubiquitous transmembrane protein of great pharmacological interest thanks to its high affinity to many drug ligands. The only high-resolution 3D-structure known for mammalian TSPO was obtained by NMR for the mouse mTSPO in DPC detergent only in presence of the high-affinity PK 11195 ligand. An atomic structure of free-ligand mTSPO is still missing to better understand the interaction of ligands with mTSPO and their effects on the protein conformation. Here, we decipher the solution structures of the recombinant mTSPO without ligand both in (i) SDS, the detergent used to extract and purify the protein from E. coli inclusion bodies, and (ii) DPC, the detergent used to solve the PK 11195-binding mTSPO NMR structure. We report partially refolded and less flexible mTSPO helices in DPC compared to SDS. Besides, DPC stabilizes the tertiary structure of mTSPO, as shown by a higher intrinsic Trp fluorescence and changes in indole environment. We evaluate by SEC-MALLS that ∼135 SDS and ∼100 DPC molecules are bound to mTSPO. SEC-small-angle X-ray (SAXS) and neutron (SANS) scattering confirm a larger mTSPO-detergent complex in SDS than in DPC. Using the contrast-matching technique in SEC-SANS, we demonstrate that mTSPO conformation is more compact and less flexible in DPC than in SDS. Combining ab initio modeling with SANS, we confirm that mTSPO conformation is less elongated in DPC than in SDS. However, the free-ligand mTSPO envelope in DPC is not as compact as the PK 11195-binding protein NMR structure, the ligand stiffening the protein.


Subject(s)
Receptors, GABA , Animals , Mice , Carrier Proteins , Detergents , Escherichia coli , Ligands , Mammals , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction , Receptors, GABA/chemistry
8.
Biophys J ; 121(13): 2514-2525, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35659635

ABSTRACT

High pressure (HP) is a particularly powerful tool to study protein folding/unfolding, revealing subtle structural rearrangements. Bovine ß-lactoglobulin (BLG), a protein of interest in food science, exhibits a strong propensity to bind various bioactive molecules. We probed the effects of the binding of biliverdin (BV), a tetrapyrrole linear chromophore, on the stability of BLG under pressure, by combining in situ HP small-angle neutron scattering (SANS) and HP-UV absorption spectroscopy. Although BV induces a slight destabilization of BLG during HP-induced unfolding, a ligand excess strongly prevents BLG oligomerization. Moreover, at SANS resolution, an excess of BV induces the complete recovery of the protein "native" 3D structure after HP removal, despite the presence of the BV covalently bound adduct. Mass spectrometry highlights the crucial role of cysteine residues in the competitive and protective effects of BV during pressure denaturation of BLG through SH/S-S exchange.


Subject(s)
Biliverdine , Lactoglobulins , Animals , Cattle , Cysteine , Lactoglobulins/chemistry , Protein Unfolding
9.
Food Chem ; 374: 131780, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34894468

ABSTRACT

This study aimed to characterise the stability of R-phycoerythrin (R-PE), a vivid natural colourant with emerging potential for application in the food industry. High-quality (A560/A280 ≥ 5), native (α-helix content 75%) R-PE was purified from commercial dried Nori (Porphyra sp.) flakes. Thermal unfolding revealed two transitions (at 56 and 72 °C), ascribed to different protein subunits. Contrary to elevated temperature, high-pressure (HP) treatment showed significant advantages: The R-PE unfolding was partly reversible and the colour bleaching was minimal. Binding of Cu2+ (6.3 × 105 M-1) and Zn2+ (1.7 × 103 M-1) influenced conformational changes in the protein tetrapyrrole chromophore without affecting R-PE structure and stability (colour). The results give new insights into the stability of R-PE suggesting its usefulness for the replacement of toxic synthetic dyes. Preservation of the red colour of R-PE could be considered in fortified food and beverages by HP processing. R-PE may act as a biosensor for Cu2+ in aquatic systems.


Subject(s)
Food Coloring Agents , Porphyra , Phycoerythrin , Protein Subunits
10.
Chem Phys Lipids ; 239: 105118, 2021 09.
Article in English | MEDLINE | ID: mdl-34280362

ABSTRACT

In order to test an encapsulation method of short fragmented DNA (∼ 20-300 bp), we study the solubilisation in 150 mM solution of NaCl of a cubic phase formed by glycerol monooleate (GMO) with negatively charged dioleoylphosphatidylglycerol (DOPG) up to the level of unilamellar vesicles and, subsequently, the restoration of the cubic phase using Ca2+ cations. We performed small angle X-ray and neutron scattering (SAXS and SANS) to follow structural changes in DOPG/GMO mixtures induced by increasing DOPG content. The cubic phase (Pn3m space group) is preserved up to ∼ 11 mol% of DOPG in DOPG/GMO. Above 20 mol%, the SANS curves are typical of unilamellar vesicles. The thickness of the DOPG/GMO lipid bilayer (dL) decreases slightly with increasing fraction of DOPG. The addition of 15 mM of CaCl2 solution shields the electrostatic repulsions of DOPG molecules, increases slightly dL and restores the cubic structures in the mixtures up to ∼ 37 mol% of DOPG. Zeta potential shows negative surface charge. The analysis of the data provides the radius of the water nano-channels of the formed non-lamellar structures. We discuss their dimensions with respect to DNA binding. In addition, Ca2+ mediates DNA - DOPG/GMO binding. The formed hexagonal phase, HII, binds less of DNA in comparison with cubic phases (∼ 6 wt% and ∼ 20 wt% of the total amount, respectively). The studied system can be utilized as anionic QII delivery vector for genetic material.


Subject(s)
Calcium/chemistry , DNA/chemistry , Lipid Bilayers/chemistry , DNA/metabolism , Glycerides/chemistry , Lipid Bilayers/metabolism , Phosphatidylglycerols/chemistry , Scattering, Small Angle , Water/chemistry , X-Ray Diffraction
11.
Biophys J ; 119(11): 2262-2274, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33129832

ABSTRACT

To probe intermediate states during unfolding and oligomerization of proteins remains a major challenge. High pressure (HP) is a powerful tool for studying these problems, revealing subtle structural changes in proteins not accessible by other means of denaturation. Bovine ß-lactoglobulin (BLG), the main whey protein, has a strong propensity to bind various bioactive molecules such as retinol and resveratrol, two ligands with different affinity and binding sites. By combining in situ HP-small-angle neutron scattering (SANS) and HP-ultraviolet/visible absorption spectroscopy, we report the specific effects of these ligands on three-dimensional conformational and local changes in BLG induced by HP. Depending on BLG concentration, two different unfolding mechanisms are observed in situ under pressures up to ∼300 MPa: either a complete protein unfolding, from native dimers to Gaussian chains, or a partial unfolding with oligomerization in tetramers mediated by disulfide bridges. Retinol, which has a high affinity for the BLG hydrophobic cavity, significantly stabilizes BLG both in three-dimensional and local environments by shifting the onset of protein unfolding by ∼100 MPa. Increasing temperature from 30 to 37°C enhances the hydrophobic stabilization effects of retinol. In contrast, resveratrol, which has a low binding affinity for site(s) on the surface of the BLG, does not induce any significant effect on the structural changes of BLG due to pressure. HP treatment back and forth up to ∼300 MPa causes irreversible covalent oligomerization of BLG. Ab initio modeling of SANS shows that the oligomers formed from the BLG-retinol complex are smaller and more elongated compared to BLG without ligand or in the presence of resveratrol. By combining HP-SANS and HP-ultraviolet/visible absorption spectroscopy, our strategy highlights the crucial role of BLG hydrophobic cavity and opens up new possibilities for the structural determination of HP-induced protein folding intermediates and irreversible oligomerization.


Subject(s)
Lactoglobulins , Protein Folding , Animals , Binding Sites , Cattle , Hydrophobic and Hydrophilic Interactions , Ligands
12.
Langmuir ; 36(28): 8218-8230, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32585107

ABSTRACT

Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.


Subject(s)
Nanoparticles , Protein Corona , Adsorption , Proteins , Silicon Dioxide
13.
Carbohydr Res ; 488: 107905, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32004953

ABSTRACT

A series of 19 synthetic alkyl and thioalkyl glycosides derived from d-mannose, d-glucose and d-galactose and having C10-C16 aglycone were investigated for cytotoxic activity against 7 human cancer and 2 non-tumor cell lines as well as for antimicrobial potential on 12 bacterial and yeast strains. The most potent compounds were found to be tetradecyl and hexadecyl ß-d-galactopyranosides (18, 19), which showed the best cytotoxicity and therapeutic index against CCRF-CEM cancer cell line. Similar cytotoxic activity showed hexadecyl α-d-mannopyranoside (5) but it also inhibited non-tumor cell lines. Because these two galactosides (18, 19) were inactive against all tested bacteria and yeast strains, they could be a target-specific for eukaryotic cells. On the other hand, ß-D-glucopyranosides with tetradecyl (11) and hexadecyl (12) aglycone inhibited only Gram-positive bacterial strain Enterococcus faecalis. The studied glycosides induce changes in the lipid bilayer thickness and lateral phase separation at high concentration, as derived from SAXS experiments on POPC model membranes. In general, glucosides and galactosides exhibit more specific properties. Those with longer aglycone show high cytotoxicity and therefore, they are more promising candidates for cancer cell line targeted inhibition.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Enterococcus faecalis/drug effects , Glycosides/chemical synthesis , Lipid Bilayers/chemistry , A549 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbohydrate Sequence , Cell Line , Cell Proliferation , Cell Survival/drug effects , Galactose/chemical synthesis , Galactose/chemistry , Galactose/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , HCT116 Cells , Humans , K562 Cells , Microbial Sensitivity Tests , Molecular Structure , Scattering, Small Angle , X-Ray Diffraction
14.
J Struct Biol ; 209(1): 107411, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31689503

ABSTRACT

Dystrophin is a large intracellular protein that prevents sarcolemmal ruptures by providing a mechanical link between the intracellular actin cytoskeleton and the transmembrane dystroglycan complex. Dystrophin deficiency leads to the severe muscle wasting disease Duchenne Muscular Dystrophy and the milder allelic variant, Becker Muscular Dystrophy (DMD and BMD). Previous work has shown that concomitant interaction of the actin binding domain 2 (ABD2) comprising spectrin like repeats 11 to 15 (R11-15) of the central domain of dystrophin, with both actin and membrane lipids, can greatly increase membrane stiffness. Based on a combination of SAXS and SANS measurements, mass spectrometry analysis of cross-linked complexes and interactive low-resolution simulations, we explored in vitro the molecular properties of dystrophin that allow the formation of ABD2-F-actin and ABD2-membrane model complexes. In dystrophin we identified two subdomains interacting with F-actin, one located in R11 and a neighbouring region in R12 and another one in R15, while a single lipid binding domain was identified at the C-terminal end of R12. Relative orientations of the dystrophin central domain with F-actin and a membrane model were obtained from docking simulation under experimental constraints. SAXS-based models were then built for an extended central subdomain from R4 to R19, including ABD2. Overall results are compatible with a potential F-actin/dystrophin/membrane lipids ternary complex. Our description of this selected part of the dystrophin associated complex bridging muscle cell membrane and cytoskeleton opens the way to a better understanding of how cell muscle scaffolding is maintained through this essential protein.


Subject(s)
Dystrophin/ultrastructure , Muscular Dystrophy, Duchenne/genetics , Sarcolemma/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/ultrastructure , Dystrophin/genetics , Humans , Lipids/chemistry , Lipids/genetics , Muscular Dystrophy, Duchenne/pathology , Protein Binding , Sarcolemma/ultrastructure , Scattering, Small Angle , Ternary Complex Factors/genetics , Ternary Complex Factors/ultrastructure , X-Ray Diffraction
15.
Rev Sci Instrum ; 90(2): 025106, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831774

ABSTRACT

We report on a high pressure (HP) cell designed for the determination of the structure of molecular solutions by small-angle neutron scattering (SANS). The HP cell is fitted up with two thick metallic windows that make the device very resistant under hydrostatic pressures up to 600 MPa (or 6 kbar). The metallic windows are removable, offering the possibility to adapt the HP cell to a given study with the pressure desired on an appropriate spatial range to study the structure of various molecular solutions by SANS. In this context, we report the absorption, transmission, and scattering properties of different metallic windows. Finally, we describe, as a proof of principle, the solution structure changes of myoglobin, a small globular protein.

16.
Biochim Biophys Acta Biomembr ; 1861(2): 514-523, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30529078

ABSTRACT

Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the ß-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.


Subject(s)
Cell Membrane/metabolism , Lipids/chemistry , Neurotoxins/metabolism , Prions/metabolism , Animals , Benzothiazoles/chemistry , Cell Membrane Permeability , Fluorescence , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Prions/chemistry , Protein Conformation , Protein Multimerization , Scattering, Radiation , Sheep
17.
Biophys J ; 115(7): 1231-1239, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30197181

ABSTRACT

Scaffolding proteins play important roles in supporting the plasma membrane (sarcolemma) of muscle cells. Among them, dystrophin strengthens the sarcolemma through protein-lipid interactions, and its absence due to gene mutations leads to the severe Duchenne muscular dystrophy. Most of the dystrophin protein consists of a central domain made of 24 spectrin-like coiled-coil repeats (R). Using small angle neutron scattering (SANS) and the contrast variation technique, we specifically probed the structure of the three first consecutive repeats 1-3 (R1-3), a part of dystrophin known to physiologically interact with membrane lipids. R1-3 free in solution was compared to its structure adopted in the presence of phospholipid-based bicelles. SANS data for the protein/lipid complexes were obtained with contrast-matched bicelles under various phospholipid compositions to probe the role of electrostatic interactions. When bound to anionic bicelles, large modifications of the protein three-dimensional structure were detected, as revealed by a significant increase of the protein gyration radius from 42 ± 1 to 60 ± 4 Å. R1-3/anionic bicelle complexes were further analyzed by coarse-grained molecular dynamics simulations. From these studies, we report an all-atom model of R1-3 that highlights the opening of the R1 coiled-coil repeat when bound to the membrane lipids. This model is totally in agreement with SANS and click chemistry/mass spectrometry data. We conclude that the sarcolemma membrane anchoring that occurs during the contraction/elongation process of muscles could be ensured by this coiled-coil opening. Therefore, understanding these structural changes may help in the design of rationalized shortened dystrophins for gene therapy. Finally, our strategy opens up new possibilities for structure determination of peripheral and integral membrane proteins not compatible with different high-resolution structural methods.


Subject(s)
Dystrophin/chemistry , Dystrophin/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Humans , Micelles , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical
18.
Nat Commun ; 9(1): 3071, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082710

ABSTRACT

The survival of viruses partly relies on their ability to self-assemble inside host cells. Although coarse-grained simulations have identified different pathways leading to assembled virions from their components, experimental evidence is severely lacking. Here, we use time-resolved small-angle X-ray scattering to uncover the nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging their full RNA genome. We reveal the formation of amorphous complexes via an en masse pathway and their relaxation into virions via a synchronous pathway. The binding energy of capsid subunits on the genome is moderate (~7kBT0, with kB the Boltzmann constant and T0 = 298 K, the room temperature), while the energy barrier separating the complexes and the virions is high (~ 20kBT0). A synthetic polyelectrolyte can lower this barrier so that filled capsids are formed in conditions where virions cannot build up. We propose a representation of the dynamics on a free energy landscape.


Subject(s)
Bromovirus/physiology , Capsid Proteins/metabolism , Capsid/metabolism , Virus Assembly , Cryoelectron Microscopy , Genome, Viral , Hydrogen-Ion Concentration , Polyelectrolytes/chemistry , RNA/analysis , Scattering, Radiation , Static Electricity , Thermodynamics , Vigna/virology , Virion/metabolism , X-Rays
19.
J Phys Condens Matter ; 29(47): 474001, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29098985

ABSTRACT

The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.

20.
Langmuir ; 33(26): 6572-6580, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28581294

ABSTRACT

Obtaining structural information on integral or peripheral membrane proteins is currently arduous due to the difficulty of their solubilization, purification, and crystallization (for X-ray crystallography (XRC) application). To overcome this challenge, bicelles are known to be a versatile tool for high-resolution structure determination, especially when using solution and/or solid state nuclear magnetic resonance (NMR) and, to a lesser extent, XRC. For proteins not compatible with these high-resolution methods, small-angle X-ray and neutron scattering (SAXS and SANS, respectively) are powerful alternatives to obtain structural information directly in solution. In particular, the SANS-based approach is a unique technique to obtain low-resolution structures of proteins in interactions with partners by contrast-matching the signal coming from the latter. In the present study, isotropic bicelles are used as a membrane mimic model for SANS-based structural studies of bound peripheral membrane proteins. We emphasize that the SANS signal coming from the deuterated isotropic bicelles can be contrast-matched in 100% D2O-based buffer, allowing us to separately and specifically focus on the signal coming from the protein in interaction with membrane lipids. We applied this method to the DYS-R11-15 protein, a fragment of the central domain of human dystrophin known to interact with lipids, and we were able to recover the signal from the protein alone. This approach gives rise to new perspectives to determine the solution structure of peripheral membrane proteins interacting with lipid membranes and might be extended to integral membrane proteins.


Subject(s)
Membrane Proteins/chemistry , Humans , Magnetic Resonance Spectroscopy , Membrane Lipids , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...