Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765442

ABSTRACT

In this paper, the nutritional value and (selected) physiochemical properties of extruded snack pellets enriched with fresh chokeberry (Aronia melanocarpa) fruits were analyzed from the perspective of being a new product for the functional food sector. The purpose of this study was to determine the effect of the addition of fresh chokeberry and variation in content and screw speed on extruded snack pellet basic compositions, fatty acid profiles, antioxidant activity, as well as water absorption and solubility indexes, fat absorption and color profiles. The obtained results revealed a significant increase in antioxidant activity for all samples (above 90% of free radical scavenging) in comparison to potato-based control samples (just over 20% of free radical scavenging). The total phenolic content assay revealed the most valuable results for samples enriched with 30% chokeberry, while Ultra Performance Liquid Chromatography (UPLC) analysis allowed the determination of the most important phenolic acids. Of interest, chokeberry addition decreased the fat absorption index (FAI) after expansion by frying. Moreover, the highest values of crude protein and crude ash were observed in snack pellets supplemented by the application of 30% chokeberry. In such samples, the crude protein content was at the level of 4.75-4.87 g 100 g-1 and crude ash content at 4.88-5.07 g 100 g-1. Moreover, saturated fatty acids (SFA) content was lower in snack pellets with chokeberry addition, and increasing the amount of chokeberry additive from 10% to 30% in extruded snack pellet recipes resulted in more than double an increase in polyunsaturated fatty acids (PUFA) proportion in the total fatty acids.

2.
Antioxidants (Basel) ; 12(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37371983

ABSTRACT

As new sources of proteins, edible insects may be excellent additives in a new generation of environmentally friendly food products that are nutritionally valuable, safe, sustainable, and are needed in today's world. The aim of this study was to determine the effect of the application of cricket flour on extruded wheat-corn-based snack pellets' basic composition, fatty acids profile, nutritional value, antioxidant activity and selected physicochemical properties. Results showed that the application of cricket flour had a significant impact on the composition and properties of snack pellets based on wheat-corn blends. In newly developed products, the enhanced level of protein and almost triple increase in crude fiber was found as an insect flour supplementation reached 30% level in the recipe. The level of cricket flour and the applied processing conditions (various moisture contents and screw speeds) significantly affect the water absorption and water solubility index and texture and color profile. Results revealed that cricket flour application significantly increased the total polyphenols content in the assessed samples in comparison to plain wheat-corn bases. Antioxidant activity was also noted to be elevated with increasing cricket flour content. These new types of snack pellets with cricket flour addition may be interesting products with high nutritional value and pro-health properties.

3.
Materials (Basel) ; 16(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36837171

ABSTRACT

The aim of this work was to evaluate the structure of novel potato-based snack foods supplemented with various levels of fresh carrot pulp by using X-ray micro-computed tomography, texture profile, and sensory analysis. Three different methods of extruded snack pellets expansion were used to obtain ready-to-eat crisps: deep-fat frying, microwave, and hot-air toasting. The obtained results revealed that the pellets expansion method affected the porosity, size of pores and wall thickness, texture properties, and notes of sensory analyses of the obtained crisps. Deep-fat frying had a similar influence to microwave heating on ready-to-eat crisps properties, and both methods were significantly different in comparison to hot-air toasting. Crisps based on snack pellets supplemented with the addition of fresh carrot pulp in the amount of 10 to 30% expansion through hot-air heating showed unsatisfactory expansion and texture, but it is highly advisable to use deep-fat frying and microwave heating to achieve attractive potato-carrot crisps.

4.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838822

ABSTRACT

The purpose of this study was to determine the effect of the addition of fresh kale and processing conditions on extruded pellet antioxidant activity and selected physicochemical properties. The results of the applied DPPH, FRAP, and TPC methods indicated that, for both 60 and 100 rpm screw speeds, snack pellet antioxidant activity and phenolic content were strongly linked to the fresh kale content, and these properties increased with the addition of this plant. The amount of fresh kale and the applied processing variables (extruder screw speed and the moisture content of the raw material blends) were also found to significantly affect the water absorption index, water solubility index, fat absorption index, fatty acid profile, and basic chemical composition of the obtained extrudates. The sample with the highest phenolic content (72.8 µg GAE/g d.w.), the most advantageous chemical composition (protein, ash, fat, carbohydrates, and fiber content), and high antioxidant properties was produced at a fresh kale content of 30%, a 36% moisture content, and a 100 rpm screw speed. The following phenolic acids were identified in this sample: protocatechuic, 4-OH-benzoic, vanillic, syringic, salicylic, caffeic, coumaric, ferulic, and sinapic. Sinapic acid was the prevailing phenolic acid.


Subject(s)
Brassica , Brassica/chemistry , Antioxidants/analysis , Snacks , Phenols/analysis , Water
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430937

ABSTRACT

A new type of corn snack has been created containing additions of wild garlic (Allium ursinum L.). This medicinal and dietary plant has a long tradition of use in folk medicine. However, studies on wild garlic composition and activity are fairly recent and scarce. This research aimed to investigate the influence of the screw speed and A. ursinum amounts on the antiradical properties as well as the content of polyphenolic compounds and individual phenolic acids of innovative snacks enriched with wild garlic leaves. The highest radical scavenging activity and content of polyphenols and phenolic acids were found in the snacks enriched with 4% wild garlic produced using screw speed 120 rpm. The obtained findings demonstrated that snacks enriched with wild garlic are a rich source of polyphenolic compounds. Since the concentration of such compounds is affected by many factors, e.g., plant material, presence of other compounds, and digestion, the second aim of this study was to determine radical scavenging activity, the content of polyphenols, and individual phenolic acids of snacks after in vitro simulated gastrointestinal digestion. Using an in vitro two-stage model, authors noted a significant difference between the concentration of polyphenolic compounds and the polyphenol content of the plant material before digestion.


Subject(s)
Garlic , Snacks , Polyphenols , Plant Leaves , Digestion
6.
Materials (Basel) ; 15(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888506

ABSTRACT

The article discusses the effect of modification of the plasticizing system of a single-screw extruder on selected physicochemical properties of rapeseed straw and buckwheat straw. A TS-45 single-screw extruder (ZMCh Metalchem, Gliwice, Poland) with an L/D = 12 plasticizing system was used for the process. The shredded straws were moistened to four moisture levels: 20, 25, 30 and 35% dry matter. Three different rotational speeds of the extruder screw were applied for the test cycle: 70, 90 and 110 rpm. The following characteristics were determined for the extrusion-cooking process: efficiency and specific mechanical energy. Selected physical properties were determined for the extrudates obtained in the process: water absorption index (WAI), water solubility index (WSI), bulk density, and the efficiency of cumulative biogas and cumulative methane production expressed on dry mass, fresh mass, and fresh organic mass basis. It has been proved that the modification of the plasticizing system had a significant impact on the course of the process and the tested physicochemical properties. An important factor confirming the correctness of the modification is the increase in biogas efficiency. After modification, the highest yield of cumulative biogas from the fresh mass was 12.94% higher than in the sample processed before modification.

7.
Materials (Basel) ; 15(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888526

ABSTRACT

The impact of the amount of durum wheat bran additive used on the selected structural, mechanical, and spectroscopic properties of thermoplastic starch moldings was examined in this study. Bran was added to corn starch from 10 to 60% by weight in the blends. Four temperature settings were used for the high-pressure injection: 120, 140, 160, and 180 °C. The highest value of elongation at break (8.53%) was observed for moldings containing 60% bran. Moreover, for these moldings, the tensile strength and flexural strength were lower (appropriately 3.43 MPa and 27.14 MPa). The highest deformation at break (1.56%) were obtained for samples with 60% bran and injection molded at 180 °C. We saw that higher bran content (50 and 60%) and a higher injection molding temperature (160 °C and 180 °C) significantly changed the color of the samples. The most significant changes in the FTIR spectra were observed at 3292 and 1644 cm-1 and in the region of 1460-1240 cm-1. Moreover, notable changes were observed in the intensity ratio of bands at 1015 and 955 cm-1. The changes observed correspond well with the amount of additive used and with the injection temperature applied; thus it may be considered as a marker of interactions affecting plasticization of the material obtained.

8.
Food Funct ; 13(16): 8425-8435, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35858282

ABSTRACT

Interest in foods enriched with natural ingredients containing bioactive compounds prompts scientists to undertake research to investigate them. This work aimed to evaluate the chemical composition, physical properties, texture, and sensory properties of semolina pasta enriched with 2.5-10% dried mushroom powder (Lion's Mane (L), Maitake (M), Reishi (R), and Enoki (E)). Supplementation with dried mushrooms increased the nutritional value of all the enriched pasta variants, mainly by increasing the content of ash, protein, and dietary fiber. Fortification with Lion's Mane (10%), Reishi (7.5% and 10%), and Enoki (10%) increased the cooking loss of the pasta. A decrease in L* (lightness) and b* (yellowness) was observed in the enriched pasta, with the exception of the cooked E and L samples. Hardness was increased in the Enoki-supplemented cooked pasta. Only the pasta with 7.5% and 10% Lion's Mane and Reishi mushrooms did not have acceptable sensory attributes. Based on the research, the recommended level of supplementation is 5% for Lion's Mane and Reishi, 7.5% for Enoki, and 10% for Maitake mushrooms.


Subject(s)
Agaricales , Cooking , Dietary Fiber/analysis , Edible Grain/chemistry , Flour/analysis , Nutritive Value , Triticum/chemistry
9.
Molecules ; 27(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268660

ABSTRACT

The aim of the study was to analyze the process of roasting coffee beans in a convection-conduction roaster (CC) without a heat exchanger and a convection-conduction-radiation roaster (CCR) with a heat exchanger for determination of the aroma profile. The aroma profile was analyzed using the SPME/GC-MS technique, and an Agrinose electronic nose was used to determine the aroma profile intensity. Arabica coffee beans from five regions of the world, namely, Peru, Costa Rica, Ethiopia, Guatemala, and Brazil, were the research material. The chemometric analyses revealed the dominance of azines, alcohols, aldehydes, hydrazides, and acids in the coffee aroma profile. Their share distinguished the aroma profiles depending on the country of origin of the coffee beans. The high content of pyridine from the azine group was characteristic for the coffee roasting process in the convection-conduction roaster without a heat exchanger, which was shown by the PCA analysis. The increased content of pyridine resulted from the appearance of coal tar, especially in the CC roaster. Pyridine has an unpleasant and bitter plant-like odor, and its excess is detrimental to the human organism. The dominant and elevated content of pyridine is a defect of the coffee roasting process in the CC roaster compared to the process carried out in the CCR machine. The results obtained with the Agrinose showed that the CC roasting method had a significant effect on the sensor responses. The effect of coal tar on the coffee beans resulted in an undesirable aroma profile characterized by increased amounts of aromatic volatile compounds and higher responses of Agrinose sensors.


Subject(s)
Volatile Organic Compounds
10.
PLoS One ; 17(2): e0259413, 2022.
Article in English | MEDLINE | ID: mdl-35176021

ABSTRACT

Durum wheat is the tenth most valuable crop on a global scale. The aim of this study was to compare the phenotypic variation of T. durum accessions of different origin with contemporary spring cultivars of this cereal species. One hundred and two accessions and 12 contemporary cultivars of Triticum durum Desf. as well as Kamut® wheat (T. turanicum), a Triticum species closely related to T. durum, were analyzed. The aim of this study was to describe the degree of variation in the phenotypic traits of grain and selected traits associated with technological quality. The examined genotypes were characterized by considerable phenotypic variation, and they can be a valuable source of material for genetic recombination in durum wheat breeding. The analyzed accessions were characterized by a higher average content of protein (16.48 vs. 14.56%) and wet gluten (38.04 vs. 32.07%), higher Zeleny sedimentation values (69.7 vs. 60.4ml), and higher flour strength (W index values of 404.64 vs. 353.47) than the reference cultivars. The kernels of the evaluated accessions and cultivars did not differ significantly in average crease depth, but significant differences were observed in the values of descriptors directly linked with kernel size, especially kernel image area and minimal Feret diameter. The traits responsible for the processing suitability of grain were more strongly correlated with color descriptors than shape descriptors, which suggests that color parameters can be used to select high-quality breeding material. The analyzed accessions have two major weaknesses, namely relatively low yields (22.6 dt ha-1 on average) and undesirable grain color, indicative of low carotenoid concentration. The accessions deposited in gene banks do not meet the relevant agronomic requirements. However, both grain yield and carotenoid concentration are polygenic traits which can be improved if desirable combinations of QTLs are assembled in breeding lines and cultivars.


Subject(s)
Biological Variation, Population , Color , Plant Breeding , Quantitative Trait Loci , Seed Bank/statistics & numerical data , Seeds/genetics , Triticum/genetics , Genes, Plant , Genome, Plant , Genotype , Phenotype , Triticum/anatomy & histology , Triticum/growth & development
11.
Materials (Basel) ; 14(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065230

ABSTRACT

Biodegradable materials are used in the manufacture of packaging and compostable films and various types of medical products. They have demonstrated a large number of potential practical applications in medicine and particularly in the treatment of various cardiac, vascular, and orthopedic conditions in adults as well in children. In our research, the extrusion-cooking technique was applied to prepare thermoplastic starch (TPS), which was then utilized to obtain environmentally friendly starch-based films. Potato starch was the basic raw material exploited. Polyvinyl alcohol and keratin were used as functional additives in amounts from 0.5 to 3%, while 20% of glycerol was harnessed as a plasticizer. The processing of the thermoplastic starch employed a single screw extruder-cooker with an L/D ratio of 16. The film blowing process was carried out using a film-blowing laboratory line with L/D = 36. FTIR Spectroscopy was applied for the assignment of the prominent functional groups. The results showed that the processing efficiency of thermoplastic starch with functional additives varied depending on the level of polyvinyl alcohol and keratin addition. Moreover, the FTIR data correlated with the changes in the physical properties of the tested films. The analysis of FTIR spectra revealed several changes in the intensity of bands originating from stretching vibrations characteristic of the -OH substituent. The changes observed depended on the presence/lack of the hydrogen bonding occurring upon interactions between the starch molecules and the various additives used. In addition, notable changes were observed in bands assigned to glycoside bonds in the starch.

12.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669143

ABSTRACT

A new type of multigrain snack has been designed containing varied additions of Moldavian dragonhead (Dracocephalum moldavica L.) seeds. The antioxidant properties and the general health benefits of this plant material have already been widely acknowledged. The research discussed herein aimed to investigate the influence of the formulation and expansion method (frying) on the content of polyphenolic compounds, individual phenolic acids, and antiradical properties of innovative snacks enriched with dragonhead seeds. The highest content of polyphenols (0.685 mg GAE/mL), free phenolic acids (47.052 µg/g of dry matter), and highest radical scavenging activity (96.23% towards DPPH) were found in the fried snacks enriched with 22% of seeds. In these samples, 11 phenolic acids were detected. Strong positive correlations were seen between the addition of dragonhead and the polyphenol content (r = 0.989) and between the quantity of the enriching additive and the content of free phenolic acids (r = 0.953). The research has shown that such innovative snacks have the potential to supply health-benefiting free phenolic acids, e.g., salicylic, isoferulic, ferulic, p-coumaric, vanillic. Our studies provide an introduction to the development of a new range of functional foods.


Subject(s)
Biphenyl Compounds/analysis , Functional Food/analysis , Hydroxybenzoates/analysis , Lamiaceae/chemistry , Picrates/analysis , Polyphenols/analysis , Snacks , Plant Extracts/analysis , Seeds/chemistry
13.
Molecules ; 25(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33022975

ABSTRACT

Goji fruit (Lycium barbarum L.) has been identified as a polyphenolic compound plant source of noted richness. It also contains polysaccharides, carotenoids, vitamins and minerals, fatty and organic acids. The purpose of the presented research was to produce innovative instant corn gruels with various dry goji berry contents (1, 3 and 5%), to determine the level of included polyphenolic compounds (including individual free phenolic acids) and to assess the antioxidant properties of these functional-food products. A further objective was to identify the optimum value of one of the most important production parameter, the rotational speed of the extruder's screw during gruel processing. The undertaken chromatographic analysis (LC-ESI-MS/MS) showed a wide variety of available phenolic acids. In the samples with 5% addition of fruit, eight phenolic acids were detected, whereas in the corn gruel without additives, only five were noted. The antioxidant activity, the content of free phenolic acids and the sum of polyphenols increased with increase of the functional additive. For all goji content, screw speeds of 100 and 120 rpm rather than 80 rpm resulted in higher polyphenol amounts and greater Trolox equivalent antioxidant capacity, as well as higher ability to scavenge DPPH.


Subject(s)
Antioxidants/pharmacology , Food, Fortified , Fruit/chemistry , Lycium/chemistry , Polyphenols/pharmacology , Zea mays/chemistry , Biphenyl Compounds/chemistry , Calibration , Chromatography, Liquid , Free Radical Scavengers/chemistry , Hydroxybenzoates/analysis , Limit of Detection , Picrates/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
14.
Materials (Basel) ; 13(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640582

ABSTRACT

The aim of the study is to determine the energy consumption of the extrusion-cooking process of corn straw under various conditions (screw speed, moisture content), water absorption measurements and water solubility indices as well as biogas efficiency evaluation. The extrusion-cooking of corn straw was carried out using a single screw extruder with L/D = 16:1 at various rotational screw speeds (70, 90, and 110 rpm) and with various initial moisture content of raw material (25 and 40%). Prior to the process, the moisture content of the raw material was measured, and next, it was moistened to 25 and 40% of dry matter. For example, at 70 rpm extruder screw speed, the temperature range was 126-150 °C. Energy consumption of straw pretreatment through extrusion-cooking was assessed in order to evaluate the possibility of using the process in an agricultural biogas plant. Biogas and methane efficiency of substrates after extrusion was tested in a laboratory scale biogas plant and expressed as a volume of cumulative methane production for fresh matter, dry matter, and dry organic matter. Pretreated corn straw moistened to 25% and processed at 110 rpm during the extrusion-cooking processing produced the most advantageous effect for methane and biogas production (51.63%) efficiency as compared to corn straw without pretreatment (49.57%). Rotational speed of the extruder screw influenced biogas and methane production. With both dry matter and dry organic matter, the increase of rotational speed of the extruder screw improved the production of cumulated biogas and methane. Pretreatment of corn straw has a positive effect on the acquisition of cumulated methane (226.3 Nm3 Mg-1 for fresh matter, 243.99 Nm3 Mg-1 for dry matter, and 254.83 Nm3 Mg-1 for dry organic matter). Preliminary analysis of infrared spectra revealed changes in the samples also at the molecular level, thus opening up the possibility of identifying marker bands that account for specific degradation changes.

15.
Nutrients ; 12(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414132

ABSTRACT

There is increased interest in following a healthy lifestyle and consuming a substantial portion of secondary plant metabolites, such as polyphenols, due to their benefits for the human body. Food products enriched with various forms of fruits and vegetables are sources of pro-health components. Nevertheless, in many cases, the level of their activities is changed in in vivo conditions. The changes are strictly connected with processes in the digestive system that transfigure the structure of the active compounds and simultaneously keep or modify their biological activities. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed to predict their release from the food matrix, as well as their bioaccessibility. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine and, occasionally, the large intestine. The presented review aims to discuss the impact of in vitro digestion on the composition, bioaccessibility and antioxidant activity of food polyphenols. Additionally, we consider the influence of pH on antioxidant changes in the aforementioned substances.


Subject(s)
Antioxidants/pharmacokinetics , Body Composition/drug effects , Digestion/drug effects , Plant Extracts/pharmacokinetics , Polyphenols/pharmacokinetics , Biological Availability , Fruit/chemistry , Humans , Vegetables/chemistry
16.
Sensors (Basel) ; 20(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283765

ABSTRACT

This paper describes the possibility of electronic nose-based detection and discrimination of volatile compound profiles of coffee from different countries roasted in a Gothot roaster under identical time and thermal regimes. The material used in the study was roasted Arabica coffee beans from Brazil, Ethiopia, Guatemala, Costa Rica, and Peru. The analyses were carried out with the use of the Agrinose electronic nose designed and constructed at the Institute of Agrophysics of the Polish Academy of Sciences in Lublin. The results of the volatile compound profile analysis provided by the Agrinose device were verified with the GC-MS technique. Chemometric tests demonstrated a dominant role of alcohols, acids, aldehydes, azines, and hydrazides in the coffee volatile compound profile. The differences in their content had an impact on the odor profile of the coffees originating from the different countries. High content of pyridine from the group of azines was detected in the coffee from Peru and Brazil despite the same roasting conditions. The results of the Agrinose analysis of volatile substances were consistent and correlated with the GC-MS results. This suggests that the Agrinose is a promising tool for selection of coffees based on their volatile compound profile.

17.
Materials (Basel) ; 13(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204364

ABSTRACT

Biodegradable materials are used in the manufacture of packaging and compostable films and various types of medical products. These have demonstrated high potential in medical applications: cardiac, vascular and orthopaedic conditions in adults as well in children. In our research, the extrusion-cooking technique was used to obtain environmentally friendly loose-fill foams as packaging. Potato starch was the basic raw material. Polyvinyl alcohol was used as an additive in the amount of 1%, 2% and 3% to replace starch. The components were mixed and moistened with water to various initial moisture contents of the blend (17%, 18% and 19%). The processing of starch foams employed the TS-45 single screw extruder-cooker (Gliwice, Poland) with the L/D ratio of 12. The foams were processed with various screw speeds (100 and 130 rpm) and with two types of forming dies (circular and ring die). The extrusion-cooking process efficiency (kg h-1) and the energy consumption (kWh kg-1) during the processing were also measured. The results showed that the processing efficiency of potato starch foams varied depending on the level of polyvinyl alcohol, the shape of the forming die and the screw speed applied. The analysis of energy consumption, mechanical properties and FTIR analyses demonstrated that the type of the forming die and the initial moisture level had the most significant impact on specific energy demands during the processing of potato starch-based foams.

18.
Int J Mol Sci ; 20(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31690061

ABSTRACT

The below article presents the results of spectroscopic research, theoretical (time-dependent density functional theory (TD-DFT)), microbiological, and antioxidative calculations for three compounds from the group of 1,3,4-thiadiazoles: 2-amino-5-phenyl-1,3,4-thiadiazole (TB), 2-amino-5-(2-hydroxyphenyl)-1,3,4-thiadiazole (TS), 2-amino-5-(2-hydroxy-5-sulfobenzoyl)-1,3,4-thiadiazole (TSF). In the fluorescence emission spectra (TS) of solutions with varying concentrations of hydrogen ions, a particularly interesting effect of dual fluorescence was observed. The aforementioned effect was observed even more clearly in the environment of butan-1-ol, relative to the compound's concentration. Depending on the modification of the resorcylic substituent (TS and TSF), we observed the emergence of two separate, partially overlapping, fluorescence emission spectra or a single emission spectrum. Interpretation of the obtained spectra using stationary and time-resolved spectroscopy allowed the correlation of the effect's emergence with the phenomenon of molecular aggregation (of a particular type) as well as, above all, the structure of the substituent system. The overlap of said effects most likely induces the processes related to the phenomenon of charge transfer (in TS) and is responsible for the observed fluorescence effects. Also, the position of the -OH group (in the resorcylic ring) is significant and can facilitate the charge transfer (CT). The determinations of the changes in the dipole moment and TD-DFT calculations further corroborate the above assumption. The following paper presents the analysis (the first for this particular group of analogues) of the fluorescence effects relative to the changes in the structure of the resorcylic group combined with pH effects. The results of biological studies also indicate the highest pharmacological potential of the analogue in the case where the effects of dual fluorescence emission are observed, which predisposes this particular group of fluorophores as effective fluorescence probes or potential pharmaceuticals with antimycotic properties.


Subject(s)
Antifungal Agents/chemistry , Thiadiazoles/chemistry , Absorption, Radiation , Antifungal Agents/pharmacology , Antifungal Agents/radiation effects , Candida/drug effects , Fluorescence , Thiadiazoles/pharmacology , Thiadiazoles/radiation effects , Ultraviolet Rays
19.
PLoS One ; 14(2): e0212070, 2019.
Article in English | MEDLINE | ID: mdl-30759170

ABSTRACT

The paper presents the results of studies related to the impact of functional additives in the form of polylactide (PLA), polyvinyl alcohol (PVA), and keratin hydrolysate (K) on the physical characteristics of biopolymer foils. TPS granulate was obtained using a TS-45 single-screw extruder with L/D = 16. Foil was produced with the use of an L/D = 36 extruder with film-blowing section. The impact of the quantity and type of the functional additives on the processing efficiency and energy consumption of granulate extrusion, as well as the physical characteristics of the foil produced: thickness, basis weight, and colour were determined. By measuring the FTIR spectra it was determined the type and origin of the respective functional groups. It was observed that foils produced from granulates with the addition of 3% PVA were characterised by the lowest thickness and basis weight. Addition of 2 and 3% of PLA increased thickness and basis weight of starch-based foils significantly. Increasing the content of keratin in SG/K samples resulted in a decrease of brightness and intensify the yellow tint of foils, especially when 2 and 3% of keratin was used. In terms of the other samples, it was observed that the colour remained almost unchanged irrespective of the percentage content of the additive used. Infrared analyses conducted on foil containing PVA, PLA, and K revealed a change in spectra intensity in the frequency range associated with-OH groups originating from the forming free, intra- and intermolecular hydrogen bonds. Based on an analysis of the respective bands within the IR range it was also concluded that considerable structural changes took place with respect to the glycosidic bonds of starch itself. The application of the mentioned additives had a significant structural impact on the produced starch-based foils. Furthermore, the conducted UV-Vis analyses revealed a substantial increase in absorbance and a related reduction of the permeability (colour change) of the obtained materials in the range of ultraviolet and visible light.


Subject(s)
Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Biopolymers/chemistry , Keratins/chemistry , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...