Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 589
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730694

ABSTRACT

So far, the cellular origin of glioblastoma (GBM) needs to be determined, with prevalent theories suggesting emergence from transformed endogenous stem cells. Adult neurogenesis primarily occurs in two brain regions: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Whether the proximity of GBM to these neurogenic niches affects patient outcome remains uncertain. Previous studies often rely on subjective assessments, limiting the reliability of those results. In this study, we assessed the impact of GBM's relationship with the cortex, SVZ and SGZ on clinical variables using fully automated segmentation methods. In 177 glioblastoma patients, we calculated optimal cutpoints of minimal distances to the SVZ and SGZ to distinguish poor from favorable survival. The impact of tumor contact with neurogenic zones on clinical parameters, such as overall survival, multifocality, MGMT promotor methylation, Ki-67 and KPS score was also examined by multivariable regression analysis, chi-square test and Mann-Whitney-U. The analysis confirmed shorter survival in tumors contacting the SVZ with an optimal cutpoint of 14 mm distance to the SVZ, separating poor from more favorable survival. In contrast, tumor contact with the SGZ did not negatively affect survival. We did not find significant correlations with multifocality or MGMT promotor methylation in tumors contacting the SVZ, as previous studies discussed. These findings suggest that the spatial relationship between GBM and neurogenic niches needs to be assessed differently. Objective measurements disprove prior assumptions, warranting further research on this topic.

2.
Radiother Oncol ; 197: 110338, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782301

ABSTRACT

BACKGROUND: Volume of interest (VOI) segmentation is a crucial step for Radiomics analyses and radiotherapy (RT) treatment planning. Because it can be time-consuming and subject to inter-observer variability, we developed and tested a Deep Learning-based automatic segmentation (DLBAS) algorithm to reproducibly predict the primary gross tumor as VOI for Radiomics analyses in extremity soft tissue sarcomas (STS). METHODS: A DLBAS algorithm was trained on a cohort of 157 patients and externally tested on an independent cohort of 87 patients using contrast-enhanced MRI. Manual tumor delineations by a radiation oncologist served as ground truths (GTs). A benchmark study with 20 cases from the test cohort compared the DLBAS predictions against manual VOI segmentations of two residents (ERs) and clinical delineations of two radiation oncologists (ROs). The ROs rated DLBAS predictions regarding their direct applicability. RESULTS: The DLBAS achieved a median dice similarity coefficient (DSC) of 0.88 against the GTs in the entire test cohort (interquartile range (IQR): 0.11) and a median DSC of 0.89 (IQR 0.07) and 0.82 (IQR 0.10) in comparison to ERs and ROs, respectively. Radiomics feature stability was high with a median intraclass correlation coefficient of 0.97, 0.95 and 0.94 for GTs, ERs, and ROs, respectively. DLBAS predictions were deemed clinically suitable by the two ROs in 35% and 20% of cases, respectively. CONCLUSION: The results demonstrate that the DLBAS algorithm provides reproducible VOI predictions for radiomics feature extraction. Variability remains regarding direct clinical applicability of predictions for RT treatment planning.

3.
JHEP Rep ; 6(6): 101063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737600

ABSTRACT

Background & Aims: Inoperable hepatocellular carcinoma (HCC) can be treated by stereotactic body radiotherapy. However, carbon ion radiotherapy (CIRT) is more effective for sparing non-tumorous liver. High linear energy transfer could promote therapy efficacy. Japanese and Chinese studies on hypofractionated CIRT have yielded excellent results. Because of different radiobiological models and the different etiological spectrum of HCC, applicability of these results to European cohorts and centers remains questionable. The aim of this prospective study was to assess safety and efficacy and to determine the optimal dose of CIRT with active raster scanning based on the local effect model (LEM) I. Methods: CIRT was performed every other day in four fractions with relative biological effectiveness (RBE)-weighted fraction doses of 8.1-10.5 Gy (total doses 32.4-42.0 Gy [RBE]). Dose escalation was performed in five dose levels with at least three patients each. The primary endpoint was acute toxicity after 4 weeks. Results: Twenty patients received CIRT (median age 74.7 years, n = 16 with liver cirrhosis, Child-Pugh scores [CP] A5 [n = 10], A6 [n = 4], B8 [n = 1], and B9 [n = 1]). Median follow up was 23 months. No dose-limiting toxicities and no toxicities exceeding grade II occurred, except one grade III gamma-glutamyltransferase elevation 12 months after CIRT, synchronous to out-of-field hepatic progression. During 12 months after CIRT, no CP elevation occurred. The highest dose level could be applied safely. No local recurrence developed during follow up. The objective response rate was 80%. Median overall survival was 30.8 months (1/2/3 years: 75%/64%/22%). Median progression-free survival was 20.9 months (1/2/3 years: 59%/43%/43%). Intrahepatic progression outside of the CIRT target volume was the most frequent pattern of progression. Conclusions: CIRT of HCC yields excellent local control without dose-limiting toxicity. Impact and implications: To date, safety and efficacy of carbon ion radiotherapy for hepatocellular carcinoma have only been evaluated prospectively in Japanese and Chinese studies. The optimal dose and fractionation when using the local effect model for radiotherapy planning are unknown. The results are of particular interest for European and American particle therapy centers, but also of relevance for all specialists involved in the treatment and care of patients with hepatocellular carcinoma, as we present the first prospective data on carbon ion radiotherapy in hepatocellular carcinoma outside of Asia. The excellent local control should encourage further use of carbon ion radiotherapy for hepatocellular carcinoma and design of randomized controlled trials. Clinical Trials Registration: The study is registered at ClinicalTrials.gov (NCT01167374).

4.
Front Oncol ; 14: 1330492, 2024.
Article in English | MEDLINE | ID: mdl-38559561

ABSTRACT

Background: Brain metastases (BM) are a common and challenging issue, with their incidence on the rise due to advancements in systemic therapies and increased patient survival. Most patients present with single BM, some of them without any further extracranial metastasis (i.e., solitary BM). The significance of postoperative intracranial tumor volume in the treatment of singular and solitary BM is still debated. Objective: This study aimed to determine the impact of resection and postoperative tumor burden on overall survival (OS) in patients with single BM. Methods: Patients with surgically treated single BM between 04/2007-01/2020 were retrospectively included. Residual tumor burden (RTB) was determined by manual segmentation of early postoperative brain MRI (72 h). Survival analyses were performed using Kaplan-Meier estimates for univariate analysis and Cox regression proportional hazards model for multivariate analysis, using preoperative Karnofsky performance status scale (KPSS), age, sex, RTB, incomplete resection and singular/solitary BM as covariates. Results: 340 patients were included, median age 64 years (54-71). 119 patients (35%) had solitary BM, 221 (65%) singular BM. Complete resection (RTB=0) was achieved in 73%, median preoperative tumor burden was 11.2 cm3 (5-25), and RTB 0 cm3 (0-0.2). Median OS of patients with singular BM was 13 months (4-33) vs 20 months (5-92) for solitary BM; p=0.062. Multivariate analysis revealed singular BM as independent risk factor for poorer OS: HR 1.840 (1.202-2.817), p=0.005. Complete vs. incomplete resection showed no significant OS difference (13 vs. 13 months, p=0.737). When focusing on solitary BM, complete resection led to a longer OS than incomplete resection (21 vs. 8 months), without statistical significance(p=0.250). Achieving RTB=0 resulted in higher OS for patients with solitary BM compared to singular BM (21 vs. 12 months, p=0.027). Patients who received postoperative radiotherapy (RT) had significantly longer OS compared to those without it (14 vs. 4 months, p<0.001), with favorable OS in those receiving stereotactic radiosurgery (SRS) (15 months (3-42), p<0.001) or hypofractionated stereotactic radiotherapy (HSRT). Conclusion: When complete intracranial tumor resection RTB=0 is achieved, patients with solitary BM have a favorable outcome compared to singular BM. Singular BM was confirmed as independent risk factor. There is a strong presumption that complete resection leads to an improved oncological prognosis. Patients with solitary BM tend to benefit with a favorable outcome following complete resection. Hence, surgical resection should be considered as a treatment option for patients presenting with either no or minimal extracranial disease. Furthermore, the highly favorable impact of postoperative RT on OS was demonstrated and confirmed, especially with SRS or HSRT.

5.
J Nucl Med ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637138

ABSTRACT

Metastasis-directed therapy has the potential to improve progression-free and overall survival in oligometastatic disease (OMD). For breast cancer, however, randomized trials have failed so far to confirm this finding. Because the concept of metastasis-directed therapy in OMD is highly dependent on the accuracy of the imaging modality, we aimed to assess the impact of 18F-FDG PET/CT on the definition of OMD in breast cancer patients. Methods: Eighty patients with a total of 150 18F-FDG PET/CT images (between October 2006 and January 2022) were enrolled in this retrospective study at the Technical University of Munich. The inclusion criteria were OMD, defined as 1-5 distant metastases, at the time of 18F-FDG PET/CT. For the current study, we systemically compared the metastatic pattern on 18F-FDG PET/CT with conventional CT. Results: At the time of 18F-FDG PET/CT, 21.3% of patients (n = 32) had a first-time diagnosis of metastatic disease, 40.7% (n = 61) had a previous history of OMD, and 38% (n = 57) had a previous history of polymetastatic disease. In 45.3% of cases, the imaging modality (18F-FDG PET/CT vs. conventional CT) had an impact on the assessment of whether OMD was present. An identical metastatic pattern was observed in only 32% of cases.18F-FDG PET/CT detected additional metastases in 33.3% of cases, mostly in the nonregional lymph node system. Conclusion: The use of 18F-FDG PET/CT had a substantial impact on the definition of OMD and detection of metastatic pattern in breast cancer. Our results emphasize the importance of establishing a standardized definition for imaging modalities in future trials and clinical practices related to metastasis-directed therapy in breast cancer patients.

6.
J Neurooncol ; 168(1): 49-56, 2024 May.
Article in English | MEDLINE | ID: mdl-38520571

ABSTRACT

BACKGROUND: The optimal management strategy for recurrent glioblastoma (rGBM) remains uncertain, and the impact of re-irradiation (Re-RT) on overall survival (OS) is still a matter of debate. This study included patients who achieved gross total resection (GTR) after a second surgery after recurrence, following the GlioCave criteria. METHODS: Inclusion criteria include being 18 years or older, having histologically confirmed locally recurrent IDHwt or IDH unknown GBM, achieving MRI-proven GTR after the second surgery, having a Karnofsky performance status of at least 60% after the second surgery, having a minimum interval of 6 months between the first radiotherapy and the second surgery, and a maximum of 8 weeks from second surgery to the start of Re-RT. RESULTS: A total of 44 patients have met the inclusion criteria. The median OS after the second surgery was 14 months. All patients underwent standard treatment after initial diagnosis, including maximum safe resection, adjuvant radiochemotherapy and adjuvant chemotherapy. Re-RT did not significantly impact OS. However, MGMT promoter methylation status and a longer interval (> 12 months) between treatments were associated with better OS. Multivariate analysis revealed the MGMT status as the only significant predictor of OS. CONCLUSION: Factors such as MGMT promoter methylation status and treatment interval play crucial roles in determining patient outcomes after second surgery. Personalized treatment strategies should consider these factors to optimize the management of rGBM. Prospective research is needed to define the value of re-RT after second surgery and to inform decision making in this situation.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Re-Irradiation , Humans , Glioblastoma/radiotherapy , Glioblastoma/surgery , Glioblastoma/mortality , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Male , Female , Middle Aged , Neoplasm Recurrence, Local/pathology , Aged , Adult , Re-Irradiation/methods , Cohort Studies , Radiotherapy, Adjuvant , Tertiary Care Centers , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
Neurooncol Adv ; 6(1): vdad171, 2024.
Article in English | MEDLINE | ID: mdl-38435962

ABSTRACT

Background: The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation. Methods: One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans. Results: The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans. Conclusions: Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.

8.
Article in English | MEDLINE | ID: mdl-38458496

ABSTRACT

PURPOSE: The identification of internal mammary lymph node metastases and the assessment of associated risk factors are crucial for adjuvant regional lymph node irradiation in patients with breast cancer. The current study aims to investigate whether tumor contact with internal mammary perforator vessels is associated with gross internal mammary lymph node involvement. METHODS AND MATERIALS: We included 297 patients with primary breast cancer and gross internal mammary (IMN+) and/or axillary metastases as well as 230 patients without lymph node metastases. Based on pretreatment dynamic contrast-enhanced magnetic resonance imaging, we assessed contact of the tumor with the internal mammary perforating vessels (IMPV). RESULTS: A total of 59 patients had ipsilateral IMN+ (iIMN+), 10 patients had contralateral IMN+ (cIMN+), and 228 patients had ipsilateral axillary metastases without IMN; 230 patients had node-negative breast cancer. In patients with iIMN+, 100% of tumors had contact with ipsilateral IMPV, with 94.9% (n = 56) classified as major contact. In iIMN- patients, major IMPV contact was observed in only 25.3% (n = 116), and 36.2% (n = 166) had no IMPV contact at all. Receiver operating characteristic analysis revealed that "major IMPV contact" was more accurate in predicting iIMN+ (area under the curve, 0.85) compared with a multivariate model combining grade of differentiation, tumor site, size, and molecular subtype (area under the curve, 0.65). Strikingly, among patients with cIMN+, 100% of tumors had contact with a crossing contralateral IMPV, whereas in cIMN- patients, IMPVs to the contralateral side were observed in only 53.4% (iIMN+) and 24.8% (iIMN-), respectively. CONCLUSIONS: Tumor contact with the IMPV is highly associated with risk of gross IMN involvement. Further studies are warranted to investigate whether this identified risk factor is also associated with microscopic IMN involvement and whether it can assist in the selection of patients with breast cancer for irradiation of the internal mammary lymph nodes.

9.
Clin Transl Radiat Oncol ; 46: 100758, 2024 May.
Article in English | MEDLINE | ID: mdl-38500667

ABSTRACT

Background: Most clinical studies failed to elicit a strong antitumor immune response and subsequent systemic tumor regression after radiation therapy (RT), even in combination with the immune checkpoint inhibitors (ICI) anti-CTLA4 or anti-PD1. Mechanistically, type I interferon (IFN-I) activation is essential for the development of such abscopal effects (AE); however, mechanisms driving or limiting IFN-I activation are ill defined. Groundbreaking discoveries have shown that antibiotics (ABx) can affect oncological outcomes and that microbiota-derived metabolites can modulate systemic antitumor immunity. Recent studies have demonstrated that the bacterial metabolites desaminotyrosine (DAT) and indole-3-carboxaldehyde (ICA) can enhance IFN-I activation in models of inflammatory diseases. Materials and Methods: The subcutaneous bilateral MC38 tumor model is a widely used experimental tool to study the AE in mice. We applied it to explore the influence of broad-spectrum ABx, DAT and ICA on the AE after radioimmunotherapy (RIT). We performed 1x8 Gy of the primary tumor ± anti-CTLA4 or anti-PD1, and ± daily oral application of ABx or metabolites. Result: Combinatory ABx had neither a significant effect on tumor growth of the irradiated tumor nor on tumor progression of the abscopal tumor after RIT with anti-CTLA4. Furthermore, DAT and ICA did not significantly impact on the AE after RIT with anti-CTLA4 or anti-PD1. Surprisingly, ICA even appears to reduce outcomes after RIT with anti-CTLA4. Conclusion: We did not find a significant impact of combinatory ABx on the AE. Experimental application of the IFN-I-inducing metabolites DAT or ICA did not boost the AE after combined RIT. Additional studies are important to further investigate whether the intestinal microbiota or specific microbiota-derived metabolites modulate the AE.

10.
Strahlenther Onkol ; 200(4): 259-275, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488902

ABSTRACT

PURPOSE: The aim of this review was to evaluate the existing evidence for radiotherapy for brain metastases in breast cancer patients and provide recommendations for the use of radiotherapy for brain metastases and leptomeningeal carcinomatosis. MATERIALS AND METHODS: For the current review, a PubMed search was conducted including articles from 01/1985 to 05/2023. The search was performed using the following terms: (brain metastases OR leptomeningeal carcinomatosis) AND (breast cancer OR breast) AND (radiotherapy OR ablative radiotherapy OR radiosurgery OR stereotactic OR radiation). CONCLUSION AND RECOMMENDATIONS: Despite the fact that the biological subtype of breast cancer influences both the occurrence and relapse patterns of breast cancer brain metastases (BCBM), for most scenarios, no specific recommendations regarding radiotherapy can be made based on the existing evidence. For a limited number of BCBM (1-4), stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (SRT) is generally recommended irrespective of molecular subtype and concurrent/planned systemic therapy. In patients with 5-10 oligo-brain metastases, these techniques can also be conditionally recommended. For multiple, especially symptomatic BCBM, whole-brain radiotherapy (WBRT), if possible with hippocampal sparing, is recommended. In cases of multiple asymptomatic BCBM (≥ 5), if SRS/SRT is not feasible or in disseminated brain metastases (> 10), postponing WBRT with early reassessment and reevaluation of local treatment options (8-12 weeks) may be discussed if a HER2/Neu-targeting systemic therapy with significant response rates in the central nervous system (CNS) is being used. In symptomatic leptomeningeal carcinomatosis, local radiotherapy (WBRT or local spinal irradiation) should be performed in addition to systemic therapy. In patients with disseminated leptomeningeal carcinomatosis in good clinical condition and with only limited or stable extra-CNS disease, craniospinal irradiation (CSI) may be considered. Data regarding the toxicity of combining systemic therapies with cranial and spinal radiotherapy are sparse. Therefore, no clear recommendations can be given, and each case should be discussed individually in an interdisciplinary setting.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Meningeal Carcinomatosis , Radiosurgery , Humans , Female , Meningeal Carcinomatosis/radiotherapy , Breast Neoplasms/radiotherapy , Breast Neoplasms/pathology , Cranial Irradiation/adverse effects , Neoplasm Recurrence, Local/etiology , Brain Neoplasms/secondary , Radiosurgery/methods
11.
Lung Cancer ; 189: 107507, 2024 03.
Article in English | MEDLINE | ID: mdl-38394745

ABSTRACT

OBJECTIVES: Post-therapy pneumonitis (PTP) is a relevant side effect of thoracic radiotherapy and immunotherapy with checkpoint inhibitors (ICI). The influence of the combination of both, including dose fractionation schemes on PTP development is still unclear. This study aims to improve the PTP risk estimation after radio(chemo)therapy (R(C)T) for lung cancer with and without ICI by investigation of the impact of dose fractionation on machine learning (ML)-based prediction. MATERIALS AND METHODS: Data from 100 patients who received fractionated R(C)T were collected. 39 patients received additional ICI therapy. Computed Tomography (CT), RT segmentation and dose data were extracted and physical doses were converted to 2-Gy equivalent doses (EQD2) to account for different fractionation schemes. Features were reduced using Pearson intercorrelation and the Boruta algorithm within 1000-fold bootstrapping. Six single (clinics, Dose Volume Histogram (DVH), ICI, chemotherapy, radiomics, dosiomics) and four combined models (radiomics + dosiomics, radiomics + DVH + Clinics, dosiomics + DVH + Clinics, radiomics + dosiomics + DVH + Clinics) were trained to predict PTP. Dose-based models were tested using physical dose and EQD2. Four ML-algorithms (random forest (rf), logistic elastic net regression, support vector machine, logitBoost) were trained and tested using 5-fold nested cross validation and Synthetic Minority Oversampling Technique (SMOTE) for resampling in R. Prediction was evaluated using the area under the receiver operating characteristic curve (AUC) on the test sets of the outer folds. RESULTS: The combined model of all features using EQD2 surpassed all other models (AUC = 0.77, Confidence Interval CI 0.76-0.78). DVH, clinical data and ICI therapy had minor impact on PTP prediction with AUC values between 0.42 and 0.57. All EQD2-based models outperformed models based on physical dose. CONCLUSIONS: Radiomics + dosiomics based ML models combined with clinical and dosimetric models were found to be suited best for PTP prediction after R(C)T and could improve pre-treatment decision making. Different RT dose fractionation schemes should be considered for dose-based ML approaches.


Subject(s)
Lung Neoplasms , Pneumonia , Radiation Oncology , Humans , Immune Checkpoint Inhibitors/adverse effects , Radiomics , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy
12.
Cancers (Basel) ; 16(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38339332

ABSTRACT

Microbeam radiation therapy (MRT) is a still pre-clinical form of spatially fractionated radiotherapy, which uses an array of micrometer-wide, planar beams of X-ray radiation. The dose modulation in MRT has proven effective in the treatment of tumors while being well tolerated by normal tissue. Research on understanding the underlying biological mechanisms mostly requires large third-generation synchrotrons. In this study, we aimed to develop a preclinical treatment environment that would allow MRT independent of synchrotrons. We built a compact microbeam setup for pre-clinical experiments within a small animal irradiator and present in vivo MRT application, including treatment planning, dosimetry, and animal positioning. The brain of an immobilized mouse was treated with MRT, excised, and immunohistochemically stained against γH2AX for DNA double-strand breaks. We developed a comprehensive treatment planning system by adjusting an existing dose calculation algorithm to our setup and attaching it to the open-source software 3D-Slicer. Predicted doses in treatment planning agreed within 10% with film dosimetry readings. We demonstrated the feasibility of MRT exposures in vivo at a compact source and showed that the microbeam pattern is observable in histological sections of a mouse brain. The platform developed in this study will be used for pre-clinical research of MRT.

13.
JAMA Oncol ; 10(4): 516-521, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38300584

ABSTRACT

Importance: The interindividual differences in severity of acute radiation dermatitis are not well understood. To date, the pathomechanism and interplay of microbiome and radiodermatitis before and during treatment remain largely unknown. Objective: To assess the association of skin microbiome baseline composition and dynamics with severity of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer. Design, Setting, and Participants: A longitudinal prospective pilot observational study was conducted between January 2017 and January 2019. Sequencing results were received in March 2021, and the data were analyzed from August 2021 to March 2023. This study was performed at an urban academic university cancer center. A total of 21 female patients with breast cancer after surgery were consecutively approached, of which 1 patient withdrew consent before the study started. Exposure: Adjuvant radiotherapy for breast cancer for 7 weeks. Main Outcomes and Measures: The main outcome was the association of baseline skin microbiome composition and its dynamics with the severity of radiodermatitis. A total of 360 skin microbiome samples from patients were analyzed, taken before, during, and after radiotherapy, from both the treated and contralateral healthy sides. The skin microbiome samples were analyzed using 16S (V1-V3) amplicon sequencing and quantitative polymerase chain reaction bacterial enumeration. Results: Twenty female patients with breast cancer after surgery who underwent radiotherapy enrolled in the study had a median (range) age of 61 (37-81) years. The median (range) body mass index of the patients was 24.2 (17.6-38.4). The 16S sequencing revealed that low (<5%) relative abundance of commensal skin bacteria (Staphylococcus epidermidis, Staphylococcus hominis, Cutibacterium acnes) at baseline composition was associated with the development of severe radiodermatitis with an accuracy of 100% (sensitivity and specificity of 100%, P < .001). Furthermore, in patients with severe radiodermatitis, quantitative polymerase chain reaction bacterial enumeration revealed a general non-species-specific overgrowth of skin bacterial load before the onset of severe symptoms. Subsequently, the abundance of commensal bacteria increased in severe radiodermatitis, coinciding with a decline in total bacterial load. Conclusions and Relevance: The findings of this observational study indicated a potential mechanism associated with the skin microbiome for the pathogenesis of severe radiodermatitis, which may be a useful biomarker for personalized prevention of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer.


Subject(s)
Breast Neoplasms , Radiodermatitis , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Breast Neoplasms/pathology , Prospective Studies , Radiodermatitis/etiology , Radiodermatitis/prevention & control , Radiotherapy, Adjuvant/adverse effects , Skin/pathology , Adult
14.
BMC Cancer ; 24(1): 108, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243190

ABSTRACT

BACKGROUND: In neuro-oncology, the inclusion of tumor patients in the molecular tumor board has only become increasingly widespread in recent years, but so far there are no standards for indication, procedure, evaluation, therapy recommendations and therapy implementation of neuro-oncological patients. The present work examines the current handling of neuro-oncological patients included in molecular tumor boards in Germany. METHODS: We created an online based survey with questions covering the handling of neuro-oncologic patient inclusion, annotation of genetic analyses, management of target therapies and the general role of molecular tumor boards in neuro-oncology in Germany. We contacted all members of the Neuro-Oncology working group (NOA) of the German Cancer Society (DKG) by e-mail. RESULTS: 38 responses were collected. The majority of those who responded were specialists in neurosurgery or neurology with more than 10 years of professional experience working at a university hospital. Molecular tumor boards (MTB) regularly take place once a week and all treatment disciplines of neuro-oncology patients take part. The inclusions to the MTB are according to distinct tumors and predominantly in case of tumor recurrence. An independently MTB member mostly create the recommendations, which are regularly implemented in the tumor treatment. Recommendations are given for alteration classes 4 and 5. Problems exist mostly within the cost takeover of experimental therapies. The experimental therapies are mostly given in the department of medical oncology. CONCLUSIONS: Molecular tumor boards for neuro-oncological patients, by now, are not standardized in Germany. Similarities exists for patient inclusion and interpretation of molecular alterations; the time point of inclusion and implementation during the patient treatment differ between the various hospitals. Further studies for standardization and harmonisation are needed. In summary, most of the interviewees envision great opportunities and possibilities for molecular-based neuro-oncological therapy in the future.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Surveys and Questionnaires , Medical Oncology/methods , Hospitals, University , Germany
15.
Int J Radiat Oncol Biol Phys ; 118(5): 1552-1562, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38199383

ABSTRACT

PURPOSE: After surgical resection of brain metastases (BMs), intraoperative radiation therapy (IORT) provides a promising alternative to adjuvant external beam radiation therapy by enabling superior organ-at-risk preservation, reduction of in-hospital times, and timely admission to subsequent systemic treatments, which increasingly comprise novel targeted immunotherapeutic approaches. We sought to assess the safety and efficacy of IORT in combination with immune checkpoint inhibitors (ICIs) and other targeted therapies (TTs). METHODS AND MATERIALS: In a multicentric approach incorporating individual patient data from 6 international IORT centers, all patients with BMs undergoing IORT were retrospectively assessed for combinatorial treatment with ICIs/TTs and evaluated for toxicity and cumulative rates, including wound dehiscence, radiation necrosis, leptomeningeal spread, local control, distant brain progression (DBP), and estimated overall survival. RESULTS: In total, 103 lesions with a median diameter of 34 mm receiving IORT combined with immunomodulatory systemic treatment or other TTs were included. The median follow-up was 13.2 (range, 1.2-102.4) months, and the median IORT dose was 25 (range, 18-30) Gy prescribed to the applicator surface. There was 1 grade 3 adverse event related to IORT recorded (2.2%). A 4.9% cumulative radiation necrosis rate was observed. The 1-year local control rate was 98.0%, and the 1-year DBP-free survival rate was 60.0%. Median time to DBP was 5.5 (range, 1.0-18.5) months in the subgroup of patients experiencing DBP, and the cumulative leptomeningeal spread rate was 4.9%. The median estimated overall survival was 26 (range, 1.2 to not reached) months with a 1-year survival rate of 74.0%. Early initiation of immunotherapy/TTs was associated with a nonsignificant trend toward improved DBP rate and overall survival. CONCLUSIONS: The combination of ICIs/TTs with IORT for resected BMs does not seem to increase toxicity and yields encouraging local control outcomes in the difficult-to-treat subgroup of larger BMs. Time gaps between surgery and systemic treatment could be shortened or avoided. The definitive role of IORT in local control after BM resection will be defined in a prospective trial.


Subject(s)
Brain Neoplasms , Humans , Prospective Studies , Retrospective Studies , Combined Modality Therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Immunotherapy/adverse effects , Necrosis , Neoplasm Recurrence, Local
16.
Phys Med Biol ; 69(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241727

ABSTRACT

Objective.For fast neutron therapy with mixed neutron and gamma radiation at the fission neutron therapy facility MEDAPP at the research reactor FRM II in Garching, no clinical dose calculation software was available in the past. Here, we present a customized solution for research purposes to overcome this lack of three-dimensional dose calculation.Approach.The applied dose calculation method is based on two sets of decomposed pencil beam kernels for neutron and gamma radiation. The decomposition was performed using measured output factors and simulated depth dose curves and beam profiles in water as reference medium. While measurements were performed by applying the two-chamber dosimetry method, simulated data was generated using the Monte Carlo code MCNP. For the calculation of neutron dose deposition on CT data, tissue-specific correction factors were generated for soft tissue, bone, and lung tissue for the MEDAPP neutron spectrum. The pencil beam calculations were evaluated with reference to Monte Carlo calculations regarding accuracy and time efficiency.Main results.In water, dose distributions calculated using the pencil beam approach reproduced the input from Monte Carlo simulations. For heterogeneous media, an assessment of the tissue-specific correction factors with reference to Monte Carlo simulations for different tissue configurations showed promising results. Especially for scenarios where no lung tissue is present, the dose calculation could be highly improved by the applied correction method.Significance.With the presented approach, time-efficient dose calculations on CT data and treatment plan evaluations for research purposes are now available for MEDAPP.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Thromboplastin , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Gamma Rays/therapeutic use , Neutrons , Radiometry/methods , Water , Tomography, X-Ray Computed , Monte Carlo Method , Algorithms , Phantoms, Imaging
17.
Neuro Oncol ; 26(4): 701-712, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38079455

ABSTRACT

BACKGROUND: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS: A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS: With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS: Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/radiotherapy , Meningioma/surgery , Meningioma/pathology , Prospective Studies , Carbon/therapeutic use , Ions/therapeutic use , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/surgery , Necrosis/drug therapy , World Health Organization
18.
Strahlenther Onkol ; 200(2): 159-174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37272996

ABSTRACT

PURPOSE: Spinal metastases (SM) are a common radiotherapy (RT) indication. There is limited level I data to drive decision making regarding dose regimen (DR) and target volume definition (TVD). We aim to depict the patterns of care for RT of SM among German Society for Radiation Oncology (DEGRO) members. METHODS: An online survey on conventional RT and Stereotactic Body Radiation Therapy (SBRT) for SM, distributed via e­mail to all DEGRO members, was completed by 80 radiation oncologists between February 24 and April 29, 2022. Participation was voluntary and anonymous. RESULTS: A variety of DR was frequently used for conventional RT (primary: n = 15, adjuvant: n = 14). 30 Gy/10 fractions was reported most frequently. TVD in adjuvant RT was heterogenous, with a trend towards larger volumes. SBRT was offered in 65% (primary) and 21% (adjuvant) of participants' institutions. A variety of DR was reported (primary: n = 40, adjuvant: n = 27), most commonly 27 Gy/3 fractions and 30 Gy/5 fractions. 59% followed International Consensus Guidelines (ICG) for TVD. CONCLUSION: We provide a representative depiction of RT practice for SM among DEGRO members. DR and TVD are heterogeneous. SBRT is not comprehensively practiced, especially in the adjuvant setting. Further research is needed to provide a solid data basis for detailed recommendations.


Subject(s)
Radiation Oncology , Radiosurgery , Spinal Neoplasms , Humans , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Radiation Oncologists , Surveys and Questionnaires , Radiosurgery/methods
19.
Int J Radiat Oncol Biol Phys ; 118(4): 1094-1104, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37875245

ABSTRACT

PURPOSE: Preoperative (neoadjuvant) radiation therapy (RT) is an essential part of multimodal rectal cancer therapy. Recently, total neoadjuvant therapy (TNT), which combines simultaneous radiochemotherapy with additional courses of chemotherapy, has emerged as an effective approach. TNT achieves a pathologic complete remission in approximately 30% of resected patients, opening avenues for treatment strategies that avoid radical organ resection. Furthermore, recent studies have demonstrated that anti-programmed cell death protein 1 immunotherapy can induce clinical complete responses in patients with specific genetic alterations. There is significant potential to enhance outcomes through intensifying, personalizing, and de-escalating treatment approaches. However, the heterogeneous response rates to RT or TNT and strategies to sensitize patients without specific genetic changes to immunotherapy remain poorly understood. METHODS AND MATERIALS: We developed a novel orthotopic mouse model of rectal cancer based on precisely defined endoscopic injections of tumor organoids that reflect tumor heterogeneity. Subsequently, we employed endoscopic- and computed tomography-guided RT and validated rectal tumor growth and response rates to therapy using small-animal magnetic resonance imaging and endoscopic follow-up. RESULTS: Rectal tumor formation was successfully induced in all mice after 2 organoid injections. Clinically relevant RT regimens with 5 × 5 Gy significantly delayed clinical signs of tumor progression and significantly improved survival. Consistent with human disease, rectal tumor progression correlated with the development of liver and lung metastases. Notably, long-term survivors after RT showed no evidence of tumor recurrence, as demonstrated by in vivo radiologic tumor staging and histopathologic examination. CONCLUSIONS: Our novel mouse model combines orthotopic tumor growth via noninvasive and precise rectal organoid injection and small-animal RT. This model holds significant promise for investigating the effect of tumor cell-intrinsic aspects, genetic alterations of the host, and exogenous factors (eg, nutrition or microbiota) on RT outcomes. Furthermore, it allows for the exploration of combination therapies involving chemotherapy, immunotherapy, or novel targeted therapies.


Subject(s)
Radiotherapy, Image-Guided , Rectal Neoplasms , Humans , Animals , Mice , Neoplasm Recurrence, Local/pathology , Rectal Neoplasms/pathology , Combined Modality Therapy , Chemoradiotherapy , Neoadjuvant Therapy , Neoplasm Staging
20.
Radiother Oncol ; 191: 110055, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109944

ABSTRACT

PURPOSE: To assess the robustness of prognostic biomarkers and molecular tumour subtypes developed for patients with head and neck squamous cell carcinoma (HNSCC) on cell-line derived HNSCC xenograft models, and to develop a novel biomarker signature by combining xenograft and patient datasets. MATERIALS AND METHODS: Mice bearing xenografts (n = 59) of ten HNSCC cell lines and a retrospective, multicentre patient cohort (n = 242) of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) were included. All patients received postoperative radiochemotherapy (PORT-C). Gene expression analysis was conducted using GeneChip Human Transcriptome Arrays. Xenografts were stratified based on their molecular subtypes and previously established gene classifiers. The dose to control 50 % of tumours (TCD50) was compared between these groups. Using differential gene expression analyses combining xenograft and patient data, a gene signature was developed to define risk groups for the primary endpoint loco-regional control (LRC). RESULTS: Tumours of mesenchymal subtype were characterized by a higher TCD50 (xenografts, p < 0.001) and lower LRC (patients, p < 0.001) compared to the other subtypes. Similar to previously published patient data, hypoxia- and radioresistance-related gene signatures were associated with high TCD50 values. A 2-gene signature (FN1, SERPINE1) was developed that was prognostic for TCD50 (xenografts, p < 0.001) and for patient outcome in independent validation (LRC: p = 0.007). CONCLUSION: Genetic prognosticators of outcome for patients after PORT-C and subcutaneous xenografts after primary clinically relevant irradiation show similarity. The identified robust 2-gene signature may help to guide patient stratification, after prospective validation. Thus, xenografts remain a valuable resource for translational research towards the development of individualized radiotherapy.


Subject(s)
Head and Neck Neoplasms , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Heterografts , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Retrospective Studies , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...