Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 918: 170452, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296085

ABSTRACT

Clinical testing has been a vital part of the response to and suppression of the COVID-19 pandemic; however, testing imposes significant burdens on a population. College students had to contend with clinical testing while simultaneously dealing with health risks and the academic pressures brought on by quarantines, changes to virtual platforms, and other disruptions to daily life. The objective of this study was to analyze whether wastewater surveillance can be used to decrease the intensity of clinical testing while maintaining reliable measurements of diseases incidence on campus. Twelve months of human health and wastewater surveillance data for eight residential buildings on a university campus were analyzed to establish how SARS-CoV-2 levels in the wastewater can be used to minimize clinical testing burden on students. Wastewater SARS-CoV-2 levels were used to create multiple scenarios, each with differing levels of testing intensity, which were compared to the actual testing volumes implemented by the university. We found that scenarios in which testing intensity fluctuations matched rise and falls in SARS-CoV-2 wastewater levels had stronger correlations between SARS-CoV-2 levels and recorded clinical positives. In addition to stronger correlations, most scenarios resulted in overall fewer weekly clinical tests performed. We suggest the use of wastewater surveillance to guide COVID-19 testing as it can significantly increase the efficacy of COVID-19 surveillance while reducing the burden placed on college students during a pandemic. Future efforts should be made to integrate wastewater surveillance into clinical testing strategies implemented on college campuses.


Subject(s)
COVID-19 , Wastewater , Humans , Wastewater-Based Epidemiological Monitoring , COVID-19 Testing , Pandemics , Universities , COVID-19/epidemiology , SARS-CoV-2
2.
medRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398062

ABSTRACT

Wastewater, which contains everything from pathogens to pollutants, is a geospatially-and temporally-linked microbial fingerprint of a given population. As a result, it can be leveraged for monitoring multiple dimensions of public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (n=1,419 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County from 2020-2022. First, we used targeted amplicon sequencing (n=966) to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with clinical caseloads from University students (N = 1,503) and Miami-Dade County hospital patients (N = 3,939 patients), as well as an 8-day earlier detection of the Delta variant in wastewater vs. in patients. Additionally, in 453 metatranscriptomic samples, we demonstrate that different wastewater sampling locations have clinically and public-health-relevant microbiota that vary as a function of the size of the human population they represent. Through assembly, alignment-based, and phylogenetic approaches, we also detect multiple clinically important viruses (e.g., norovirus ) and describe geospatial and temporal variation in microbial functional genes that indicate the presence of pollutants. Moreover, we found distinct profiles of antimicrobial resistance (AMR) genes and virulence factors across campus buildings, dorms, and hospitals, with hospital wastewater containing a significant increase in AMR abundance. Overall, this effort lays the groundwork for systematic characterization of wastewater to improve public health decision making and a broad platform to detect emerging pathogens.

3.
Sci Total Environ ; 898: 165459, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37442462

ABSTRACT

The use of wastewater-based surveillance (WBS) for detecting pathogens within communities has been growing since the beginning of the COVID-19 pandemic with early efforts investigating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater. Recent efforts have shed light on the utilization of WBS for alternative targets, such as fungal pathogens, like Candida auris, in efforts to expand the technology to assess non-viral targets. The objective of this study was to extend workflows developed for SARS-CoV-2 quantification to evaluate whether C. auris can be recovered from wastewater, inclusive of effluent from a wastewater treatment plant (WWTP) and from a hospital with known numbers of patients colonized with C. auris. Measurements of C. auris in wastewater focused on culture-based methods and quantitative PCR (qPCR). Results showed that C. auris can be cultured from wastewater and that levels detected by qPCR were higher in the hospital wastewater compared to the wastewater from the WWTP, suggesting either dilution or degradation of this pathogenic yeast at downstream collection points. The results from this study illustrate that WBS can extend beyond SARS-CoV-2 monitoring to evaluate additional non-viral pathogenic targets and demonstrates that C. auris isolated from wastewater is competent to replicate in vitro using fungal-specific culture media.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Candida auris , Saccharomyces cerevisiae , Wastewater , Florida , Pandemics
4.
Sci Total Environ ; 890: 164289, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37216988

ABSTRACT

Molecular methods have been used to detect human pathogens in wastewater with sampling typically performed at wastewater treatment plants (WWTP) and upstream locations within the sewer system. A wastewater-based surveillance (WBS) program was established at the University of Miami (UM) in 2020, which included measurements of SARS-CoV-2 levels in wastewater from its hospital and within the regional WWTP. In addition to the development of a SARS-CoV-2 quantitative PCR (qPCR) assay, qPCR assays to detect other human pathogens of interest were also developed at UM. Here we report on the use of a modified set of reagents published by the CDC to detect nucleic acids of Monkeypox virus (MPXV) which emerged during May of 2022 to become a concern worldwide. Samples collected from the University hospital and from the regional WWTP were processed through DNA and RNA workflows and analyzed by qPCR to detect a segment of the MPXV CrmB gene. Results show positive detections of MPXV nucleic acids in the hospital and wastewater treatment plant wastewater which coincided with clinical cases in the community and mirrored the overall trend of nationwide MPXV cases reported to the CDC. We recommend the expansion of current WBS programs' methods to detect a broader range of pathogens of concern in wastewater and present evidence that viral RNA in human cells infected by a DNA virus can be detected in wastewater.


Subject(s)
COVID-19 , Mpox (monkeypox) , Nucleic Acids , Humans , Monkeypox virus , Wastewater , Workflow , SARS-CoV-2 , DNA , Hospitals, University , RNA, Viral
5.
ACS ES T Water ; 3(9): 2849-2862, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-38487696

ABSTRACT

Wastewater-based epidemiology (WBE) has been utilized to track community infections of Coronavirus Disease 2019 (COVID-19) by detecting RNA of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), within samples collected from wastewater. The correlations between community infections and wastewater measurements of the RNA can potentially change as SARS-CoV-2 evolves into new variations by mutating. This study analyzed SARS-CoV-2 RNA, and indicators of human waste in wastewater from two sewersheds of different scales (University of Miami (UM) campus and Miami-Dade County Central District wastewater treatment plant (CDWWTP)) during five internally defined COVID-19 variant dominant periods (Initial, Pre-Delta, Delta, Omicron and Post-Omicron wave). SARS-CoV-2 RNA quantities were compared against COVID-19 clinical cases and hospitalizations to evaluate correlations with wastewater SARS-CoV-2 RNA. Although correlations between documented clinical cases and hospitalizations were high, prevalence for a given wastewater SARS-CoV-2 level varied depending upon the variant analyzed. The correlative relationship was significantly steeper (more cases per level found in wastewater) for the Omicron-dominated period. For hospitalization, the relationships were steepest for the Initial wave, followed by the Delta wave with flatter slopes during all other waves. Overall results were interpreted in the context of SARS-CoV-2 virulence and vaccination rates among the community.

6.
J Biomol Tech ; 34(4)2023 Dec.
Article in English | MEDLINE | ID: mdl-38268997

ABSTRACT

Wastewater-based surveillance (WBS) is a noninvasive, epidemiological strategy for assessing the spread of COVID-19 in communities. This strategy was based upon wastewater RNA measurements of the viral target, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The utility of WBS for assessing the spread of COVID-19 has motivated research to measure targets beyond SARS-CoV-2, including pathogens containing DNA. The objective of this study was to establish the necessary steps for isolating DNA from wastewater by modifying a long-standing RNA-specific extraction workflow optimized for SARS-CoV-2 detection. Modifications were made to the sample concentration process and included an evaluation of bead bashing prior to the extraction of either DNA or RNA. Results showed that bead bashing reduced detection of RNA from wastewater but improved recovery of DNA as assessed by quantitative polymerase chain reaction (qPCR). Bead bashing is therefore not recommended for the quantification of RNA viruses using qPCR. Whereas for Mycobacterium bacterial DNA isolation, bead bashing was necessary for improving qPCR quantification. Overall, we recommend 2 separate workflows, one for RNA viruses that does not include bead bashing and one for other microbes that use bead bashing for DNA isolation. The experimentation done here shows that current-standing WBS program methodologies optimized for SARS-CoV-2 need to be modified and reoptimized to allow for alternative pathogens to be readily detected and monitored, expanding its utility as a tool for public health assessment.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Workflow
7.
ACS ES T Water ; 2(11): 1992-2003, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36398131

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), ß-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry (r s = 0.69 without normalization, r s = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...