Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494428

ABSTRACT

Determining the prevalence and local transmission dynamics of parasitic organisms are necessary to understand the ability of parasites to persist in host populations and disperse across regions, yet local transmission dynamics, diversity, and distribution of haemosporidian parasites remain poorly understood. We studied the prevalence, diversity, and distributions of avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, and Leucocytozoon among resident and migratory birds in Serra do Mar, Brazil. Using 399 blood samples from 66 Atlantic Forest bird species, we determined the prevalence and molecular diversity of these pathogens across avian host species and described a new species of Haemoproteus. Our molecular and morphological study also revealed that migratory species were infected more than residents. However, vector infective stages (gametocytes) of Leucocytozoon spp., the most prevalent parasites found in the most abundant migrating host species in Serra do Mar (Elaenia albiceps), were not seen in blood films of local birds suggesting that this long-distance Austral migrant can disperse Leucocytozoon parasite lineages from Patagonia to the Atlantic Forest, but lineage sharing among resident species and local transmission cannot occur in this part of Brazil. Our study demonstrates that migratory species may harbor a higher diversity and prevalence of parasites than resident species, but transportation of some parasites by migratory hosts may not always affect local transmission.

2.
J Anim Ecol ; 89(2): 423-435, 2020 02.
Article in English | MEDLINE | ID: mdl-31571223

ABSTRACT

Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.


Subject(s)
Bird Diseases/epidemiology , Haemosporida/genetics , Infections , Parasites , Alaska , Animals , Bayes Theorem , Birds , Phylogeny , Probability
3.
Mol Ecol ; 28(10): 2681-2693, 2019 05.
Article in English | MEDLINE | ID: mdl-30959568

ABSTRACT

Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.


Subject(s)
Birds/parasitology , Ecology , Host-Parasite Interactions , Malaria, Avian/parasitology , Animals , Haemosporida/genetics , Haemosporida/pathogenicity , Host Specificity , Phylogeny , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...