Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 6(30): eaaz6197, 2020 07.
Article in English | MEDLINE | ID: mdl-32832657

ABSTRACT

Tumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor MYO10 as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion. We further identified JAG1 signaling as a previously unknown upstream activator of MYO10 expression in leader cells. Using live-cell imaging, we found that MYO10 drives filopodial persistence necessary for micropatterning extracellular fibronectin into linear tracks at the edge of 3D collective invasion exclusively in leaders. Our data fit a model where epigenetic heterogeneity and JAG1 signaling jointly drive collective cancer invasion through MYO10 up-regulation in epigenetically permissive leader cells, which induces filopodia dynamics necessary for linearized fibronectin micropatterning.

2.
Oncotarget ; 6(7): 4757-72, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25749031

ABSTRACT

Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Focal Adhesion Kinase 1/metabolism , Mesenchymal Stem Cells/pathology , Receptor, IGF Type 1/metabolism , Triple Negative Breast Neoplasms/pathology , Apoptosis , Blotting, Western , Female , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Humans , Immunoenzyme Techniques , Mesenchymal Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptor, IGF Type 1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL