Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 392(1): 7-20, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35661921

ABSTRACT

The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Prion Diseases , Prions , Animals , Humans , Primates
2.
Sci Rep ; 9(1): 15699, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666632

ABSTRACT

Cynomolgus macaque has been used for the evaluation of the zoonotic potential of prion diseases, especially for classical-Bovine Spongiform Encephalopathy (classical-BSE) infectious agent. PrP amino acid sequence is considered to play a key role in the susceptibility to prion strains and only one amino acid change may alter this susceptibility. Macaque and human-PrP sequences have only nine amino acid differences, but the effect of these amino acid changes in the susceptibility to dissimilar prion strains is unknown. In this work, the transmissibility of a panel of different prions from several species was compared in transgenic mice expressing either macaque-PrPC (TgMac) or human-PrPC (Hu-Tg340). Similarities in the transmissibility of most prion strains were observed suggesting that macaque is an adequate model for the evaluation of human susceptibility to most of the prion strains tested. Interestingly, TgMac were more susceptible to classical-BSE strain infection than Hu-Tg340. This differential susceptibility to classical-BSE transmission should be taken into account for the interpretation of the results obtained in macaques. It could notably explain why the macaque model turned out to be so efficient (worst case model) until now to model human situation towards classical-BSE despite the limited number of animals inoculated in the laboratory experiments.


Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , Encephalopathy, Bovine Spongiform/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Amino Acid Sequence/genetics , Animals , Brain/metabolism , Brain/pathology , Cattle , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Disease Models, Animal , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/pathology , Genetic Predisposition to Disease , Humans , Macaca , Macaca fascicularis/genetics , Mice , Mice, Transgenic , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Proteins/metabolism
3.
Acta Neuropathol Commun ; 7(1): 126, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31481130

ABSTRACT

Alzheimer's disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated ß-amyloid peptides (Aß) and tau proteins. Iatrogenic induction of Aß is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aß. Induction of Aß and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer's disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aß or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aß depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer's disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain Diseases/diagnostic imaging , Brain Diseases/genetics , Brain/diagnostic imaging , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain Diseases/pathology , Cheirogaleidae , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Transgenic , Primates , Species Specificity
4.
Prion ; : 1-8, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30080439

ABSTRACT

The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected. After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques. It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine. These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.

5.
Nat Commun ; 8(1): 1268, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097653

ABSTRACT

Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.


Subject(s)
Blood Transfusion , Creutzfeldt-Jakob Syndrome/transmission , Transfusion Reaction , Animals , Asymptomatic Diseases , Blood Donors , Cattle , Creutzfeldt-Jakob Syndrome/metabolism , Encephalopathy, Bovine Spongiform/transmission , Female , Humans , Macaca fascicularis , Male , Mice , Prion Diseases/classification , Prion Diseases/metabolism , Prion Diseases/transmission , Prion Proteins/metabolism
6.
Sci Rep ; 7(1): 4955, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28694463

ABSTRACT

Gadolinium (Gd)-stained MRI is based on Gd contrast agent (CA) administration into the brain parenchyma. The strong signal increase induced by Gd CA can be converted into resolution enhancement to record microscopic MR images. Moreover, inhomogeneous distribution of the Gd CA in the brain improves the contrast between different tissues and provides new contrasts in MR images. Gd-stained MRI detects amyloid plaques, one of the microscopic lesions of Alzheimer's disease (AD), in APPSL/PS1M146L mice or in primates. Numerous transgenic mice with various plaque typologies have been developed to mimic cerebral amyloidosis and comparison of plaque detection between animal models and humans with new imaging methods is a recurrent concern. Here, we investigated detection of amyloid plaques by Gd-stained MRI in five mouse models of amyloidosis (APPSL/PS1M146L, APP/PS1dE9, APP23, APPSwDI, and 3xTg) presenting with compact, diffuse and intracellular plaques as well as in post mortem human-AD brains. The brains were then evaluated by histology to investigate the impact of size, compactness, and iron load of amyloid plaques on their detection by MRI. We show that Gd-stained MRI allows detection of compact amyloid plaques as small as 25 µm, independently of their iron load, in mice as well as in human-AD brains.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloidosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Plaque, Amyloid/diagnostic imaging , Alzheimer Disease/metabolism , Amyloidosis/metabolism , Animals , Autopsy , Contrast Media/administration & dosage , Disease Models, Animal , Gadolinium/administration & dosage , Humans , Iron/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism
7.
Sci Rep ; 5: 11573, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123044

ABSTRACT

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.


Subject(s)
Scrapie/pathology , Animals , Cattle , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Models, Animal , Humans , Macaca fascicularis , Male , Mice , Prions/metabolism , Scrapie/transmission , Temporal Lobe/pathology , Time Factors
8.
Transfusion ; 55(6): 1231-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25647476

ABSTRACT

BACKGROUND: Analysis of archived appendix samples reveals that one in 2000 individuals in the United Kingdom may carry the infectious prion protein associated with variant Creutzfeldt-Jakob disease (vCJD), raising questions about the risk of transfusion transmission from apparently healthy carriers. Blood leukoreduction shows limited efficiency against prions. Therefore, in absence of antemortem diagnostic tests, prion removal filters, including the P-Capt filter were designed to improve blood transfusion safety. STUDY DESIGN AND METHODS: We evaluated the performances of two filters, the P-Capt and one prototype (PMC#005), with blood-borne infectivity in two independent experiments. Blood was drawn twice from prion-infected macaques. Corresponding RBCCs were prepared according to two different procedures: in Study A, the leukoreduction step was followed by the filtration through the P-Capt. In Study B, the leukoreduction and prion removal were performed simultaneously through the PMC#005. For each study, two groups of three animals were transfused twice with samples before or after filtration. RESULTS: Among the six macaques transfused with nonfiltered samples, five developed neurologic signs but only four exhibited peripheral detectable protease-resistant prion protein (PrPres) accumulation. In Study A, the three animals transfused with P-Capt-filtered samples remain asymptomatic and devoid of PrPres in lymph node biopsies 6 years after the transfusion. In Study B, one animal transfused with PMC#005-filtered samples developed vCJD. CONCLUSION: After 5 to 6 years of progress, this ongoing study provides encouraging results on the prion blood removal performances of the P-Capt filter in macaques, an utmost relevant model for human prion diseases.


Subject(s)
Blood Component Transfusion/adverse effects , Blood Safety/instrumentation , Blood-Borne Pathogens/isolation & purification , Creutzfeldt-Jakob Syndrome/prevention & control , Encephalopathy, Bovine Spongiform/prevention & control , Leukocyte Reduction Procedures/instrumentation , Prions/isolation & purification , Ultrafiltration/instrumentation , Adsorption , Animals , Blood Safety/methods , Brain Chemistry , Cattle , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/transmission , Encephalopathy, Bovine Spongiform/blood , Encephalopathy, Bovine Spongiform/transmission , Macaca fascicularis , Male , Micropore Filters , Microspheres , Prions/analysis , Prions/toxicity , Resins, Synthetic , Spinal Cord/chemistry , Spleen/chemistry
9.
Transfusion ; 54(4): 1037-45, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24117735

ABSTRACT

BACKGROUND: Five cases of variant Creutzfeldt-Jakob disease (vCJD) infections were attributed to infusion of contaminated blood components, turning to real the interhuman transmissibility of this prion disease from asymptomatic carriers. Preventive policies rely on exclusion from blood donation and benefit of leukoreduction initially implemented against leukotropic viruses. In the absence of available antemortem diagnostic tests, the updated prevalence of silent vCJD infections (1/2000 in the United Kingdom) urges the necessity to enforce blood safety with more efficient active measures able to remove the remaining infectivity. STUDY DESIGN AND METHODS: Several affinity resins were demonstrated to reduce high levels of brain-spiked infectivity from human leukoreduced red blood cells (L-RBCs). One was integrated in a device adapted to field constraints (volumes, duration) of human transfusion. We assessed here the ability of the resulting removal filter, termed P-Capt, to remove infectivity from human L-RBC units spiked with scrapie-infected hamster brain (≥10,000 infectious units/mL), through inoculation of hamsters with pre- and post-blood filtration samples. RESULTS: Incubation periods of recipient animals suggest around a 3-log removal of brain-derived prion infectivity by filtration through the P-Capt. CONCLUSION: On brain-derived spiked infectivity, the P-Capt filter provided a performance similar to the resin packed in columns used for initial proof-of-concept studies, suggesting an appropriate scale-up to efficiently remove infectivity from an individual human blood bag. According to the ability of resin to completely remove apparent endogenous infectivity from hamster leukoreduced blood, the implementation of such a filter, now commercially available, might seriously improve blood safety toward prions.


Subject(s)
Decontamination/methods , Erythrocyte Transfusion/standards , Erythrocytes/chemistry , Filtration/methods , Micropore Filters , Prions/isolation & purification , Animals , Cricetinae , Equipment Design , Erythrocyte Transfusion/methods , Female , Humans , Leukapheresis , Mesocricetus , Prion Diseases/blood , Prion Diseases/prevention & control
10.
Pathogens ; 2(3): 520-32, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-25437205

ABSTRACT

Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe.

11.
PLoS One ; 3(8): e3017, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18714385

ABSTRACT

BACKGROUND: Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains. METHODOLOGY/PRINCIPAL FINDINGS: Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine. CONCLUSION/SIGNIFICANCE: Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.


Subject(s)
Cattle/genetics , Macaca fascicularis/genetics , Aging , Animals , Cattle/growth & development , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/transmission , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/transmission , Frontal Lobe/pathology , Genetic Predisposition to Disease , Humans , Species Specificity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL