Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658677

ABSTRACT

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Subject(s)
Acrylamides , Drug Resistance, Neoplasm , ErbB Receptors , Indoles , Lung Neoplasms , Mutation , Pyrimidines , Transcription Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Acrylamides/pharmacology , Acrylamides/therapeutic use , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Gefitinib/pharmacology , Hippo Signaling Pathway , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , TEA Domain Transcription Factors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems
2.
Nat Commun ; 15(1): 897, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316783

ABSTRACT

Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.


Subject(s)
DNA , Gene Expression Regulation , Animals , Humans , Mice , Promoter Regions, Genetic/genetics , Gene Expression , Biomarkers
3.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106050

ABSTRACT

Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment 1 . However, the molecular mechanisms underlying resistance to LGR5 + CSCs depletion in colorectal cancer (CRC) 2,3 remain largely elusive. Here, we unveil the existence of a primitive cell state dubbed the oncofetal (OnF) state, which works in tandem with the LGR5 + stem cells (SCs) to fuel tumor evolution in CRC. OnF cells emerge early during intestinal tumorigenesis and exhibit features of lineage plasticity. Normally suppressed by the Retinoid X Receptor (RXR) in mature SCs, the OnF program is triggered by genetic deletion of the gatekeeper APC. We demonstrate that diminished RXR activity unlocks an epigenetic circuity governed by the cooperative action of YAP and AP1, leading to OnF reprogramming. This high-plasticity state is inherently resistant to conventional chemotherapies and its adoption by LGR5 + CSCs enables them to enter a drug-tolerant state. Furthermore, through phenotypic tracing and ablation experiments, we uncover a functional redundancy between the OnF and stem cell (SC) states and show that targeting both cellular states is essential for sustained tumor regression in vivo . Collectively, these findings establish a mechanistic foundation for developing effective combination therapies with enduring impact on CRC treatment.

4.
Sci Adv ; 9(25): eadf4975, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37343108

ABSTRACT

Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/ß/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Pandemics , Epithelial Cells
5.
Nat Commun ; 13(1): 6867, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369193

ABSTRACT

The precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate. We identified and validated molecular signatures associated with proprioceptors innervating back (Tox, Epha3), abdominal (C1ql2), and hindlimb (Gabrg1, Efna5) muscles. We also found that proprioceptor muscle identity precedes acquisition of receptor character and comprise programs controlling wiring specificity. These findings indicate that muscle-type identity is a fundamental aspect of proprioceptor subtype differentiation that is acquired during early development and includes molecular programs involved in the control of muscle target specificity.


Subject(s)
Proprioception , Sensory Receptor Cells , Mice , Animals , Sensory Receptor Cells/physiology , Proprioception/physiology , Muscles
6.
J Immunol ; 206(11): 2652-2667, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34031145

ABSTRACT

The ability of innate immune cells to respond to pathogen-associated molecular patterns across a wide range of intensities is fundamental to limit the spreading of infections. Studies on transcription responses to pathogen-activated TLRs have often used relatively high TLR ligand concentrations, and less is known about their regulation under mild stimulatory conditions. We had shown that the transcription factor NFAT5 facilitates expression of antipathogen genes under TLR stimulation conditions corresponding to low pathogen loads. In this study, we analyze how NFAT5 optimizes TLR-activated responses in mouse macrophages. We show that NFAT5 was required for effective recruitment of central effectors p65/NF-κB and c-Fos to specific proinflammatory target genes, such as Nos2, Il6, and Tnf in primary macrophages responding to low doses of the TLR4 ligand LPS. By contrast, NFAT5 was not required for p65/NF-κB recruitment in response to high LPS doses. Using the transposase-accessible chromatin with high-throughput sequencing assay, we show that NFAT5 facilitated chromatin accessibility mainly at promoter regions of multiple TLR4-responsive genes. Analysis of various histone marks that regulate gene expression in response to pathogens identified H3K27me3 demethylation as an early NFAT5-dependent mechanism that facilitates p65 recruitment to promoters of various TLR4-induced genes. Altogether, these results advance our understanding about specific mechanisms that optimize antipathogen responses to limit infections.


Subject(s)
Chromatin/immunology , Transcription Factors/immunology , Animals , Cells, Cultured , Demethylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/deficiency
7.
Cancer Discov ; 11(3): 754-777, 2021 03.
Article in English | MEDLINE | ID: mdl-33361384

ABSTRACT

Glioblastoma is a lethal brain tumor that exhibits heterogeneity and resistance to therapy. Our understanding of tumor homeostasis is limited by a lack of genetic tools to selectively identify tumor states and fate transitions. Here, we use glioblastoma subtype signatures to construct synthetic genetic tracing cassettes and investigate tumor heterogeneity at cellular and molecular levels, in vitro and in vivo. Through synthetic locus control regions, we demonstrate that proneural glioblastoma is a hardwired identity, whereas mesenchymal glioblastoma is an adaptive and metastable cell state driven by proinflammatory and differentiation cues and DNA damage, but not hypoxia. Importantly, we discovered that innate immune cells divert glioblastoma cells to a proneural-to-mesenchymal transition that confers therapeutic resistance. Our synthetic genetic tracing methodology is simple, scalable, and widely applicable to study homeostasis in development and diseases. In glioblastoma, the method causally links distinct (micro)environmental, genetic, and pharmacologic perturbations and mesenchymal commitment. SIGNIFICANCE: Glioblastoma is heterogeneous and incurable. Here, we designed synthetic reporters to reflect the transcriptional output of tumor cell states and signaling pathways' activity. This method is generally applicable to study homeostasis in normal tissues and diseases. In glioblastoma, synthetic genetic tracing causally connects cellular and molecular heterogeneity to therapeutic responses.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Cell Communication , Gene Expression Regulation, Neoplastic , Glioblastoma/etiology , Glioblastoma/pathology , Immunity, Innate , Biomarkers, Tumor , Cell Communication/genetics , Disease Susceptibility , Glioblastoma/metabolism , Humans , Immunity, Innate/genetics , Neoplasm Grading , Neoplasm Staging , Transcriptome , Tumor Microenvironment
8.
Cell Rep ; 33(13): 108533, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378683

ABSTRACT

Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells.


Subject(s)
Deubiquitinating Enzymes/physiology , Hematopoietic Stem Cells/physiology , Leukemia/metabolism , RNA-Binding Protein FUS/metabolism , Ubiquitin-Specific Proteases/physiology , Animals , Cell Line , Cell Proliferation , DNA Damage , DNA Repair , Hematopoiesis , Hematopoietic Stem Cells/enzymology , Humans , K562 Cells , Leukemia/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , RNA Interference , RNA, Small Interfering/metabolism , Ubiquitination
9.
Sci Data ; 6(1): 256, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672995

ABSTRACT

Multi-omics approaches use a diversity of high-throughput technologies to profile the different molecular layers of living cells. Ideally, the integration of this information should result in comprehensive systems models of cellular physiology and regulation. However, most multi-omics projects still include a limited number of molecular assays and there have been very few multi-omic studies that evaluate dynamic processes such as cellular growth, development and adaptation. Hence, we lack formal analysis methods and comprehensive multi-omics datasets that can be leveraged to develop true multi-layered models for dynamic cellular systems. Here we present the STATegra multi-omics dataset that combines measurements from up to 10 different omics technologies applied to the same biological system, namely the well-studied mouse pre-B-cell differentiation. STATegra includes high-throughput measurements of chromatin structure, gene expression, proteomics and metabolomics, and it is complemented with single-cell data. To our knowledge, the STATegra collection is the most diverse multi-omics dataset describing a dynamic biological system.


Subject(s)
B-Lymphocytes , Cell Differentiation , Animals , B-Lymphocytes/cytology , B-Lymphocytes/physiology , Cell Line , Genomics , Metabolomics , Mice , Proteomics
10.
Microbiome ; 6(1): 218, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30522523

ABSTRACT

BACKGROUND: The oral cavity comprises a rich and diverse microbiome, which plays important roles in health and disease. Previous studies have mostly focused on adult populations or in very young children, whereas the adolescent oral microbiome remains poorly studied. Here, we used a citizen science approach and 16S profiling to assess the oral microbiome of 1500 adolescents around Spain and its relationships with lifestyle, diet, hygiene, and socioeconomic and environmental parameters. RESULTS: Our results provide a detailed snapshot of the adolescent oral microbiome and how it varies with lifestyle and other factors. In addition to hygiene and dietary habits, we found that the composition of tap water was related to important changes in the abundance of several bacterial genera. This points to an important role of drinking water in shaping the oral microbiota, which has been so far poorly explored. Overall, the microbiome samples of our study can be clustered into two broad compositional patterns (stomatotypes), driven mostly by Neisseria and Prevotella, respectively. These patterns show striking similarities with those found in unrelated populations. CONCLUSIONS: We hypothesize that these stomatotypes represent two possible global optimal equilibria in the oral microbiome that reflect underlying constraints of the human oral niche. As such, they should be found across a variety of geographical regions, lifestyles, and ages.


Subject(s)
Bacteria/classification , Drinking Water/microbiology , Metagenomics/methods , Mouth/microbiology , Adolescent , Adult , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feeding Behavior , Humans , Hygiene , Life Style , Neisseria/classification , Neisseria/genetics , Neisseria/isolation & purification , Phylogeny , Prevotella/classification , Prevotella/genetics , Prevotella/isolation & purification , RNA, Ribosomal, 16S/genetics , School Teachers , Sequence Analysis, DNA , Spain
11.
J Exp Med ; 215(12): 3115-3135, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30487290

ABSTRACT

Kras-driven non-small-cell lung cancers (NSCLCs) are a leading cause of death with limited therapeutic options. Many NSCLCs exhibit high levels of Ezh2, the enzymatic subunit of polycomb repressive complex 2 (PRC2). We tested Ezh2 inhibitors as single agents or before chemotherapy in mice with orthotopic Kras-driven NSCLC grafts, which homogeneously express Ezh2. These tumors display sensitivity to EZH2 inhibition by GSK126 but also amplify an inflammatory program involving signaling through NF-κB and genes residing in PRC2-regulated chromatin. During this process, tumor cells overcome GSK126 antiproliferative effects. We identified oncogenes that may mediate progression through an in vivo RNAi screen aimed at targets of PRC2/NF-κB. An in vitro compound screening linked GSK126-driven inflammation and therapeutic vulnerability in human cells to regulation of RNA synthesis and proteostasis. Interestingly, GSK126-treated NSCLCs in vivo also showed an enhanced response to a combination of nimesulide and bortezomib. Thus, Ezh2 inhibition may restrict cell proliferation and promote defined adaptive responses. Targeting these responses potentially improves outcomes in Kras-driven NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , A549 Cells , Animals , Bortezomib/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Indoles/pharmacology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Proto-Oncogene Proteins p21(ras)/genetics , Pyridones/pharmacology , Sulfonamides/pharmacology
12.
Cell Rep ; 21(1): 154-167, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978469

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs) arise from common progenitors. Tumor-derived factors redirect differentiation from immune-promoting DCs to tolerogenic MDSCs, an immunological hallmark of cancer. Indeed, in vitro differentiation of DCs from human primary monocytes results in the generation of MDSCs under tumor-associated conditions (PGE2 or tumor cell-conditioned media). Comparison of MDSC and DC DNA methylomes now reveals extensive demethylation with specific gains of DNA methylation and repression of immunogenic-associated genes occurring in MDSCs specifically, concomitant with increased DNA methyltransferase 3A (DNMT3A) levels. DNMT3A downregulation erases MDSC-specific hypermethylation, and it abolishes their immunosuppressive capacity. Primary MDSCs isolated from ovarian cancer patients display a similar hypermethylation signature in connection with PGE2-dependent DNMT3A overexpression. Our study links PGE2- and DNMT3A-dependent hypermethylation with immunosuppressive MDSC functions, providing a promising target for therapeutic intervention.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Dinoprostone/pharmacology , Gene Expression Regulation, Neoplastic , Immune Tolerance , Myeloid-Derived Suppressor Cells/drug effects , Ovarian Neoplasms/genetics , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Lineage/immunology , Chemokine CCL22/genetics , Chemokine CCL22/immunology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/immunology , Culture Media, Conditioned/pharmacology , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/immunology , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA Methylation , DNA Methyltransferase 3A , Female , Humans , Monocytes/drug effects , Monocytes/immunology , Multigene Family , Myeloid-Derived Suppressor Cells/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Primary Cell Culture
13.
Sci Rep ; 7(1): 7594, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28790320

ABSTRACT

Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.


Subject(s)
Cytidine Deaminase/genetics , Epigenesis, Genetic/immunology , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Hyper-IgM Immunodeficiency Syndrome/genetics , Immunoglobulin Class Switching/genetics , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Binding Sites , Cell Line, Tumor , Cytidine Deaminase/immunology , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Histone-Lysine N-Methyltransferase/immunology , Histones/immunology , Humans , Hyper-IgM Immunodeficiency Syndrome/immunology , Hyper-IgM Immunodeficiency Syndrome/pathology , Immunoglobulin G/genetics , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Models, Biological , Mutation , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/immunology , Signal Transduction
14.
Sci Rep ; 7: 44138, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28281571

ABSTRACT

Opitz trigonocephaly C syndrome (OTCS) is a rare genetic disorder characterized by craniofacial anomalies, variable intellectual and psychomotor disability, and variable cardiac defects with a high mortality rate. Different patterns of inheritance and genetic heterogeneity are known in this syndrome. Whole exome and genome sequencing of a 19-year-old girl (P7), initially diagnosed with OTCS, revealed a de novo nonsense mutation, p.Q638*, in the MAGEL2 gene. MAGEL2 is an imprinted, maternally silenced, gene located at 15q11-13, within the Prader-Willi region. Patient P7 carried the mutation in the paternal chromosome. Recently, mutations in MAGEL2 have been described in Schaaf-Yang syndrome (SHFYNG) and in severe arthrogryposis. Patient P7 bears resemblances with SHFYNG cases but has other findings not described in this syndrome and common in OTCS. We sequenced MAGEL2 in nine additional OTCS patients and no mutations were found. This study provides the first clear molecular genetic basis for an OTCS case, indicates that there is overlap between OTCS and SHFYNG syndromes, and confirms that OTCS is genetically heterogeneous. Genes encoding MAGEL2 partners, either in the retrograde transport or in the ubiquitination-deubiquitination complexes, are promising candidates as OTCS disease-causing genes.


Subject(s)
Craniosynostoses , Intellectual Disability , Mutation, Missense , Proteins , Adult , Craniosynostoses/genetics , Craniosynostoses/metabolism , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Proteins/genetics , Proteins/metabolism
15.
Genome Biol ; 17: 4, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758199

ABSTRACT

BACKGROUND: The role of cytokines in establishing specific transcriptional programmes in innate immune cells has long been recognized. However, little is known about how these extracellular factors instruct innate immune cell epigenomes to engage specific differentiation states. Human monocytes differentiate under inflammatory conditions into effector cells with non-redundant functions, such as dendritic cells and macrophages. In this context, interleukin 4 (IL-4) and granulocyte macrophage colony-stimulating factor (GM-CSF) drive dendritic cell differentiation, whereas GM-CSF alone leads to macrophage differentiation. RESULTS: Here, we investigate the role of IL-4 in directing functionally relevant dendritic-cell-specific DNA methylation changes. A comparison of DNA methylome dynamics during differentiation from human monocytes to dendritic cells and macrophages identified gene sets undergoing dendritic-cell-specific or macrophage-specific demethylation. Demethylation is TET2-dependent and is essential for acquiring proper dendritic cell and macrophage identity. Most importantly, activation of the JAK3-STAT6 pathway, downstream of IL-4, is required for the acquisition of the dendritic-cell-specific demethylation and expression signature, following STAT6 binding. A constitutively activated form of STAT6 is able to bypass IL-4 upstream signalling and instruct dendritic-cell-specific functional DNA methylation changes. CONCLUSIONS: Our study is the first description of a cytokine-mediated sequence of events leading to direct gene-specific demethylation in innate immune cell differentiation.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , Interleukin-4/genetics , STAT6 Transcription Factor/genetics , DNA-Binding Proteins/genetics , Dendritic Cells/cytology , Dioxygenases , Gene Expression Regulation , Humans , Immunity, Innate/genetics , Interleukin-4/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Monocytes/cytology , Monocytes/metabolism , Proto-Oncogene Proteins/genetics , STAT6 Transcription Factor/metabolism
16.
Nat Commun ; 6: 7335, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26081581

ABSTRACT

Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals.


Subject(s)
B-Lymphocytes/metabolism , Common Variable Immunodeficiency/metabolism , DNA Methylation , Immunologic Memory , Case-Control Studies , Gene Expression Regulation , Humans , Twins, Monozygotic
17.
Genome Biol ; 16: 2, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25601191

ABSTRACT

BACKGROUND: Monocyte-to-osteoclast conversion is a unique terminal differentiation process that is exacerbated in rheumatoid arthritis and bone metastasis. The mechanisms implicated in upregulating osteoclast-specific genes involve transcription factors, epigenetic regulators and microRNAs (miRNAs). It is less well known how downregulation of osteoclast-inappropriate genes is achieved. RESULTS: In this study, analysis of miRNA expression changes in osteoclast differentiation from human primary monocytes revealed the rapid upregulation of two miRNA clusters, miR-212/132 and miR-99b/let-7e/125a. We demonstrate that they negatively target monocyte-specific and immunomodulatory genes like TNFAIP3, IGF1R and IL15. Depletion of these miRNAs inhibits osteoclast differentiation and upregulates their targets. These miRNAs are also upregulated in other inflammatory monocytic differentiation processes. Most importantly, we demonstrate for the first time the direct involvement of Nuclear Factor kappa B (NF-κB) in the regulation of these miRNAs, as well as with their targets, whereby NF-κB p65 binds the promoters of these two miRNA clusters and NF-κB inhibition or depletion results in impaired upregulation of their expression. CONCLUSIONS: Our results reveal the direct involvement of NF-κB in shutting down certain monocyte-specific genes, including some anti-inflammatory activities, through a miRNA-dependent mechanism for proper osteoclast differentiation.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/genetics , Monocytes/cytology , Monocytes/metabolism , NF-kappa B/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Transcriptional Activation , Binding Sites , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation , Gene Silencing , Humans , Immunomodulation/genetics , Monocytes/immunology , Multigene Family , Organ Specificity/genetics , Position-Specific Scoring Matrices , Protein Binding , RNA Interference , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL