Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Article in English | MEDLINE | ID: mdl-33075093

ABSTRACT

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Subject(s)
Mammary Neoplasms, Animal/metabolism , Oncolytic Virotherapy/methods , Transcription Factors/metabolism , Transcriptome , Vaccinia virus/genetics , Vaccinia/metabolism , Virus Replication , Animals , Computational Biology , Dogs , Female , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/therapy , Mammary Neoplasms, Animal/virology , Single-Cell Analysis , Transcription Factors/genetics , Vaccinia/genetics , Vaccinia/virology
2.
J Nucl Med ; 59(1): 121-126, 2018 01.
Article in English | MEDLINE | ID: mdl-29051343

ABSTRACT

Perturbation of thyroid iodide uptake is a well-documented side effect of the use of iodinated contrast media (ICM) administered intravenously. This side effect is thought to be mediated by free iodide in ICM formulations, but this hypothesis has never been formally proven. The aim of the present study was to assess the validity of this hypothesis. Methods: We used mass spectrometry analysis to quantify free-iodide contamination in ICM. Established cell lines expressing the Na/I symporter (NIS) were used to quantify the effect of ICM on iodide uptake. SPECT/CT was used to measure the in vivo uptake of 99mTc-pertechnetate and 123I in 2 NIS-expressing mouse tissues, thyroid and salivary glands. Scintiscans of ICM-naïve and ICM-administered patients were compared. Immunohistologic and Western blot analyses were performed to evaluate NIS protein expression in these organs. Results: Although free iodide was present in ICM formulations, in vitro uptake of iodide by NIS-expressing cells was not significantly affected by ICM. In mice, intravenous or sublingual administration of ICM led to a reduction in radiotracer uptake by the thyroid, accompanied by a dramatic reduction in NIS protein expression in this tissue. In the salivary glands, neither radiotracer uptake nor NIS protein expression was affected by ICM. The thyroid-selective effect of ICM was also observed in humans. Administration of potassium iodide as a source of free iodide led to a diminution of 99mTc-pertechnetate uptake in both mouse thyroid and mouse salivary glands. Altogether, these data rule out a direct intervention of free iodide in the perturbation of thyroid uptake and suggest a direct and selective effect of ICM on the thyroid. Conclusion: We demonstrated that ICM reduce thyroid uptake of iodide independently of free iodide. This effect is due to a specific and dramatic decrease in NIS expression in thyrocytes. These data cast serious doubt on the relevance of measuring urinary iodide concentration to evaluate the delay between ICM administration and radioiodine therapy in patients with differentiated thyroid carcinoma. Finally, the ability of ICM to perturb iodide uptake in the thyroid may be used in radioprotection.


Subject(s)
Contrast Media/chemistry , Contrast Media/pharmacology , Halogenation , Iodides/metabolism , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Animals , Biological Transport/drug effects , HT29 Cells , Humans , Mice , Single Photon Emission Computed Tomography Computed Tomography , Thyroid Gland/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...