Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 436(13): 168594, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724002

ABSTRACT

The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.


Subject(s)
COVID-19 , Protein Serine-Threonine Kinases , SARS-CoV-2 , Humans , Protein Serine-Threonine Kinases/metabolism , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/physiology , Animals , Eukaryotic Initiation Factor-2/metabolism , Virus Replication , eIF-2 Kinase/metabolism , Phosphorylation , Host-Pathogen Interactions
SELECTION OF CITATIONS
SEARCH DETAIL