Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591679

ABSTRACT

The crystallization process of methane hydrates in a confined geometry resembling seabed porous silica sedimentary conditions has been studied using molecular dynamics simulations. With this objective in mind, a fully atomistic quartz silica slit pore has been designed, and the temperature stability of a methane hydrate crystalline seed in the presence of water and guest molecule methane has been analyzed. NaCl ion pairs have been added in different concentrations, simulating salinity conditions up to values higher than average oceanic conditions. The structure obtained when the hydrate crystallizes inside the pore is discussed, paying special attention to the presence of ionic doping inside the hydrate and the subsequent induced structural distortion. The shift in the hydrate stability conditions due to the increasing water salinity is discussed and compared with the case of unconfined hydrate, concluding that the influence of the confinement geometry and pore hydrophilicity produces a larger deviation in the confined hydrate phase equilibria.

2.
Adv Sci (Weinh) ; 10(25): e2207742, 2023 09.
Article in English | MEDLINE | ID: mdl-37386790

ABSTRACT

Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein ß-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated ß-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of ß-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.


Subject(s)
RNA-Binding Proteins
3.
J Chem Phys ; 157(9): 094503, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36075712

ABSTRACT

Freezing of water is the most common liquid-to-crystal phase transition on Earth; however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240 K. We employ two different water models: mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic nonpolarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih and Ic and a stacking mixture of ice Ih/Ic, reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates obtained by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner that contributes to benchmarking the freezing behavior of two popular water models.

4.
J Chem Phys ; 143(13): 134504, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26450320

ABSTRACT

The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

5.
Phys Chem Chem Phys ; 14(29): 10140-6, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22729111

ABSTRACT

The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid non-polarisable model. The path integral Monte Carlo technique was used, permitting the incorporation of nuclear quantum effects. The coexistence lines were traced out using the Gibbs-Duhem integration method, once having calculated the free energies of the liquid and solid phases in the quantum limit, which were obtained via thermodynamic integration from the classical value by scaling the mass of the water molecule. The resulting phase diagram is qualitatively correct, being displaced to lower temperatures by 15-20 K. It is found that the influence of nuclear quantum effects is correlated to the tetrahedral order parameter.

6.
J Chem Phys ; 132(11): 114503, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331301

ABSTRACT

Quantum path-integral simulations of the hydrate solid structures have been performed using the recently proposed TIP4PQ/2005 model. By also performing classical simulations using this model, the impact of the nuclear quantum effects on the hydrates is highlighted; nuclear quantum effects significantly modify the structure, densities, and energies of the hydrates, leading to the conclusion that nuclear quantum effects are important not only when studying the solid phases of water but also when studying the hydrates. To analyze the validity of a classical description of hydrates, a comparison of the results of the TIP4P/2005 model (optimized for classical simulations) with those of TIP4PQ/2005 (optimized for path-integral simulations) was undertaken. A classical description of hydrates is able to correctly predict the densities at temperatures above 150 K and the relative stabilities between the hydrates and ice I(h). The inclusion of nuclear quantum effects does not significantly modify the sequence of phases found in the phase diagram of water at negative pressures, namely, I(h)-->sII-->sH. In fact the transition pressures are little affected by the inclusion of nuclear quantum effects; the phase diagram predictions for hydrates can be performed with reasonable accuracy using classical simulations. However, for a reliable calculation of the densities below 150 K, the sublimation energies, the constant pressure heat capacity, and the radial distribution functions, the incorporation of nuclear quantum effects is indeed required.

SELECTION OF CITATIONS
SEARCH DETAIL