Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 371, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191531

ABSTRACT

Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.


Subject(s)
Aurora Kinase A , Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Mice , Aurora Kinase A/genetics , Phosphoric Monoester Hydrolases , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/prevention & control , Proto-Oncogene Proteins c-akt/genetics
2.
Nature ; 618(7963): 159-168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225977

ABSTRACT

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Subject(s)
Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effects
3.
Front Cell Dev Biol ; 9: 634649, 2021.
Article in English | MEDLINE | ID: mdl-33996795

ABSTRACT

Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.

4.
Biochem J ; 477(18): 3541-3565, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32970140

ABSTRACT

Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.


Subject(s)
Cell Membrane/metabolism , Cilia/metabolism , Ciliopathies/metabolism , Phosphatidylinositols/metabolism , Signal Transduction , Animals , Cell Membrane/genetics , Cell Membrane/pathology , Cilia/genetics , Cilia/pathology , Ciliopathies/genetics , Ciliopathies/pathology , Humans , Mice , Phosphatidylinositols/genetics , Zebrafish/genetics , Zebrafish/metabolism
5.
Hum Mol Genet ; 29(1): 31-48, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31625572

ABSTRACT

Polycystic kidney disease (PKD) results in the formation of renal cysts that can impair function leading to renal failure. DNA damage accumulates in renal epithelial cells in PKD, but the molecular mechanisms are unclear and are investigated here. Phosphoinositide 3-kinase (PI3K)/AKT signaling activates mammalian target of rapamycin complex 1 (mTORC1) and hyperactivation of mTORC1 is a common event in PKD; however, mTORC1 inhibitors have yielded disappointing results in clinical trials. Here, we demonstrate AKT and mTORC1 hyperactivation in two representative murine PKD models (renal epithelial-specific Inpp5e knockout and collecting duct-specific Pkd1 deletion) and identify a downstream signaling network that contributes to DNA damage accumulation. Inpp5e- and Pkd1-null renal epithelial cells showed DNA damage including double-stranded DNA breaks associated with increased replication fork numbers, multinucleation and centrosome amplification. mTORC1 activated CAD, which promotes de novo pyrimidine synthesis, to sustain cell proliferation. AKT, but not mTORC1, inhibited the DNA repair/replication fork origin firing regulator TOPBP1, which impacts on DNA damage and cell proliferation. Notably, Inpp5e- and Pkd1-null renal epithelial cell spheroid formation defects were rescued by AKT inhibition. These data reveal that AKT hyperactivation contributes to DNA damage accumulation in multiple forms of PKD and cooperates with mTORC1 to promote cell proliferation. Hyperactivation of AKT may play a causal role in PKD by regulating DNA damage and cell proliferation, independent of mTORC1, and AKT inhibition may be a novel therapeutic approach for PKD.


Subject(s)
DNA Damage/physiology , Polycystic Kidney Diseases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , DNA Damage/genetics , Electrophoresis, Polyacrylamide Gel , Immunoblotting , Immunohistochemistry , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Polycystic Kidney Diseases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Signal Transduction/physiology
6.
Hum Mol Genet ; 28(2): 230-244, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30265301

ABSTRACT

Polycystic kidney disease (PKD) results from excessive renal epithelial cell proliferation, leading to the formation of large fluid filled cysts which impair renal function and frequently lead to renal failure. Hyperactivation of numerous signaling pathways is hypothesized to promote renal epithelial cell hyperproliferation including mTORC1, extracellular signal-regulated kinase (ERK) and WNT signaling. ß-catenin and its target genes are overexpressed in some PKD models and expression of activated ß-catenin induces cysts in mice; however, ß-catenin murine knockout studies indicate it may also inhibit cystogenesis. Therefore, it remains unclear whether ß-catenin is pro- or anti-cystogenic and whether its role is canonical WNT signaling-dependent. Here, we investigate whether ß-catenin deletion in a PKD model with hyperactived ß-catenin signaling affects disease progression to address whether increased ß-catenin drives PKD. We used renal epithelial cell specific Inpp5e-null PKD mice which we report exhibit increased ß-catenin and target gene expression in the cystic kidneys. Surprisingly, co-deletion of ß-catenin with Inpp5e in renal epithelial cells exacerbated polycystic kidney disease and renal failure compared to Inpp5e deletion alone, but did not normalize ß-catenin target gene expression. ß-catenin/Inpp5e double-knockout kidneys exhibited increased cyst initiation, cell proliferation and MEK/ERK signaling compared to Inpp5e-null, associated with increased fibrosis, which may collectively contribute to accelerated disease. Therefore, increased ß-catenin and WNT target gene expression are not necessarily cyst promoting. Rather ß-catenin may play a dual and context-dependent role in PKD and in the presence of other cyst-inducing mutations (Inpp5e-deletion); ß-catenin loss may exacerbate disease in a WNT target gene-independent manner.


Subject(s)
Polycystic Kidney Diseases/metabolism , beta Catenin/metabolism , Animals , Cell Proliferation , Cells, Cultured , Disease Progression , Gene Deletion , Gene Expression , Kidney/metabolism , MAP Kinase Signaling System , Mice , Mice, Knockout , Phosphoric Monoester Hydrolases/genetics , Polycystic Kidney Diseases/enzymology , Polycystic Kidney Diseases/genetics , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/genetics
7.
J Cell Biol ; 216(7): 1949-1957, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28566325

ABSTRACT

Mammalian target of rapamycin complex 1 (mTORC1) and cell senescence are intimately linked to each other and to organismal aging. Inhibition of mTORC1 is the best-known intervention to extend lifespan, and recent evidence suggests that clearance of senescent cells can also improve health and lifespan. Enhanced mTORC1 activity drives characteristic phenotypes of senescence, although the underlying mechanisms responsible for increased activity are not well understood. We have identified that in human fibroblasts rendered senescent by stress, replicative exhaustion, or oncogene activation, mTORC1 is constitutively active and resistant to serum and amino acid starvation. This is driven in part by depolarization of senescent cell plasma membrane, which leads to primary cilia defects and a resultant failure to inhibit growth factor signaling. Further, increased autophagy and high levels of intracellular amino acids may act to support mTORC1 activity in starvation conditions. Interventions to correct these phenotypes restore sensitivity to the mTORC1 signaling pathway and cause death, indicating that persistent signaling supports senescent cell survival.


Subject(s)
Amino Acids/metabolism , Cellular Senescence , Fibroblasts/enzymology , Intercellular Signaling Peptides and Proteins/metabolism , Multiprotein Complexes/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Amino Acids/deficiency , Animals , Autophagy , Cell Death , Cell Membrane/metabolism , Cell Proliferation , Cellular Senescence/radiation effects , Cilia/enzymology , Cilia/pathology , Culture Media, Serum-Free/metabolism , Fibroblasts/pathology , Fibroblasts/radiation effects , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Mechanistic Target of Rapamycin Complex 1 , Membrane Potentials , Mice, Knockout , Mutation , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction/radiation effects , Stress, Physiological , Transfection , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
J Cell Biol ; 216(1): 247-263, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27998989

ABSTRACT

Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e-/- embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e-/- ciliopathy phenotypes and "normalizes" Hedgehog signaling. INPP5E's phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e-/- cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.


Subject(s)
Abnormalities, Multiple/enzymology , Cerebellum/abnormalities , Cilia/enzymology , Embryo, Mammalian/enzymology , Eye Abnormalities/enzymology , Kidney Diseases, Cystic/enzymology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Retina/abnormalities , Retinal Pigment Epithelium/enzymology , Second Messenger Systems , Abnormalities, Multiple/genetics , Animals , Cell Line , Cerebellum/enzymology , Disease Models, Animal , Eye Abnormalities/genetics , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Retina/enzymology , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Time Factors , Transfection , Zinc Finger Protein Gli2
9.
Curr Top Microbiol Immunol ; 362: 247-314, 2012.
Article in English | MEDLINE | ID: mdl-23086422

ABSTRACT

Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.


Subject(s)
Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/physiology , Animals , Humans , Inositol Polyphosphate 5-Phosphatases , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
10.
FEBS Lett ; 586(18): 2846-57, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22828281

ABSTRACT

Phosphoinositides regulate numerous cellular events via the recruitment and activation of multiple lipid-binding effector proteins. The precise temporal and spatial regulation of phosphoinositide signals by the co-ordinated activities of phosphoinositide kinases and phosphatases is essential for homeostasis and development. Mutations in two inositol polyphosphate 5-phosphatases, INPP5E and OCRL, cause the cerebrorenal syndromes of Joubert and Lowe's, respectively. INPP5E and OCRL exhibit overlapping phosphoinositide substrate specificity and subcellular localisation, including an association with the primary cilia. Here, we review recent studies that identify a new role for these enzymes in the regulation of primary cilia function. Joubert syndrome has been extensively linked to primary cilia defects, and Lowe's may represent a new class of 'ciliopathy associated' syndromes.


Subject(s)
Cilia/pathology , Cilia/physiology , Phosphoric Monoester Hydrolases/metabolism , Humans , Inositol Polyphosphate 5-Phosphatases , Mutation , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...