Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38648134

ABSTRACT

Due to its wide application, deep reinforcement learning (DRL) has been extensively studied in the motion planning community in recent years. However, in the current DRL research, regardless of task completion, the state information of the agent will be reset afterward. This leads to a low sample utilization rate and hinders further explorations of the environment. Moreover, in the initial training stage, the agent has a weak learning ability in general, which affects the training efficiency in complex tasks. In this study, a new hierarchical reinforcement learning (HRL) framework dubbed hierarchical learning based on game playing with state relay (HGR) is proposed. In particular, we introduce an auxiliary penalty to regulate task difficulty, and one training mechanism, the state relay mechanism, is designed. The relay mechanism can make full use of the intermediate states of the agent and expand the environment exploration of low-level policy. Our algorithm can improve the sample utilization rate, reduce the sparse reward problem, and thereby enhance the training performance in complex environments. Simulation tests are carried out on two public experiment platforms, i.e., MazeBase and MuJoCo, to verify the effectiveness of the proposed method. The results show that HGR significantly benefits the reinforcement learning (RL) area.

2.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400237

ABSTRACT

Decision-making is a basic component of agents' (e.g., intelligent sensors) behaviors, in which one's cognition plays a crucial role in the process and outcome. Extensive games, a class of interactive decision-making scenarios, have been studied in diverse fields. Recently, a model of extensive games was proposed in which agent cognition of the structure of the underlying game and the quality of the game situations are encoded by artificial neural networks. This model refines the classic model of extensive games, and the corresponding equilibrium concept-cognitive perfect equilibrium (CPE)-differs from the classic subgame perfect equilibrium, since CPE takes agent cognition into consideration. However, this model neglects the consideration that game-playing processes are greatly affected by agents' cognition of their opponents. To this end, in this work, we go one step further by proposing a framework in which agents' cognition of their opponents is incorporated. A method is presented for evaluating opponents' cognition about the game being played, and thus, an algorithm designed for playing such games is analyzed. The resulting equilibrium concept is defined as adversarial cognition equilibrium (ACE). By means of a running example, we demonstrate that the ACE is more realistic than the CPE, since it involves learning about opponents' cognition. Further results are presented regarding the computational complexity, soundness, and completeness of the game-solving algorithm and the existence of the equilibrium solution. This model suggests the possibility of enhancing an agent's strategic ability by evaluating opponents' cognition.


Subject(s)
Cognition , Learning , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...