Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Ecol Evol ; 14(9): e70044, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39279793

ABSTRACT

The Karner blue butterfly, Plebejus (Lycaeides) samuelis, is an endangered North American climate change-vulnerable species that has undergone substantial historical habitat loss and population decline. To better understand the species' genetic status and support Karner blue conservation, we sampled 116 individuals from 22 localities across the species' geographical range in Wisconsin (WI), Michigan (MI), Indiana (IN), and New York (NY). Using genomic analysis, we found that these samples were divided into three major geographic groups, NY, WI, and MI-IN, with populations in WI and MI-IN each further divided into three subgroups. A high level of inbreeding was revealed by inbreeding coefficients above 10% in almost all populations in our study. However, strong correlation between F ST and geographical distance suggested that genetic divergence between populations increases with distance, such that introducing individuals from more distant populations may be a useful strategy for increasing population-level diversity and preserving the species. We also found that Karner blue populations had lower genetic diversity than closely related species and had more alleles that were present only at low frequencies (<5%) in other species. Some of these alleles may negatively impact individual fitness and may have become prevalent in Karner blue populations due to inbreeding. Finally, analysis of these possibly deleterious alleles in the context of predicted three-dimensional structures of proteins revealed potential molecular mechanisms behind population declines, providing insights for conservation. This rich new range-wide understanding of the species' population genomic structure can contextualize past extirpations and help conserve and even enhance Karner blue genetic diversity.

2.
Nat Microbiol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294458

ABSTRACT

Identification of bacterial protein-protein interactions and predicting the structures of these complexes could aid in the understanding of pathogenicity mechanisms and developing treatments for infectious diseases. Here we developed RoseTTAFold2-Lite, a rapid deep learning model that leverages residue-residue coevolution and protein structure prediction to systematically identify and structurally characterize protein-protein interactions at the proteome-wide scale. Using this pipeline, we searched through 78 million pairs of proteins across 19 human bacterial pathogens and identified 1,923 confidently predicted complexes involving essential genes and 256 involving virulence factors. Many of these complexes were not previously known; we experimentally tested 12 such predictions, and half of them were validated. The predicted interactions span core metabolic and virulence pathways ranging from post-transcriptional modification to acid neutralization to outer-membrane machinery and should contribute to our understanding of the biology of these important pathogens and the design of drugs to combat them.

3.
J Mol Biol ; 436(22): 168764, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197652

ABSTRACT

Classification of protein domains based on homology and structural similarity serves as a fundamental tool to gain biological insights into protein function. Recent advancements in protein structure prediction, exemplified by AlphaFold, have revolutionized the availability of protein structural data. We focus on classifying about 9000 Pfam families into ECOD (Evolutionary Classification of Domains) by using predicted AlphaFold models and the DPAM (Domain Parser for AlphaFold Models) tool. Our results offer insights into their homologous relationships and domain boundaries. More than half of these Pfam families contain DPAM domains that can be confidently assigned to the ECOD hierarchy. Most assigned domains belong to highly populated folds such as Immunoglobulin-like (IgL), Armadillo (ARM), helix-turn-helix (HTH), and Src homology 3 (SH3). A large fraction of DPAM domains, however, cannot be confidently assigned to ECOD homologous groups. These unassigned domains exhibit statistically different characteristics, including shorter average length, fewer secondary structure elements, and more abundant transmembrane segments. They could potentially define novel families remotely related to domains with known structures or novel superfamilies and folds. Manual scrutiny of a subset of these domains revealed an abundance of internal duplications and recurring structural motifs. Exploring sequence and structural features such as disulfide bond patterns, metal-binding sites, and enzyme active sites helped uncover novel structural folds as well as remote evolutionary relationships. By bridging the gap between sequence-based Pfam and structure-based ECOD domain classifications, our study contributes to a more comprehensive understanding of the protein universe by providing structural and functional insights into previously uncharacterized proteins.

4.
Hum Genet ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110250

ABSTRACT

This paper presents an evaluation of predictions submitted for the "HMBS" challenge, a component of the sixth round of the Critical Assessment of Genome Interpretation held in 2021. The challenge required participants to predict the effects of missense variants of the human HMBS gene on yeast growth. The HMBS enzyme, critical for the biosynthesis of heme in eukaryotic cells, is highly conserved among eukaryotes. Despite the application of a variety of algorithms and methods, the performance of predictors was relatively similar, with Kendall's tau correlation coefficients between predictions and experimental scores around 0.3 for a majority of submissions. Notably, the median correlation (≥ 0.34) observed among these predictors, especially the top predictions from different groups, was greater than the correlation observed between their predictions and the actual experimental results. Most predictors were moderately successful in distinguishing between deleterious and benign variants, as evidenced by an area under the receiver operating characteristic (ROC) curve (AUC) of approximately 0.7 respectively. Compared with the recent two rounds of CAGI competitions, we noticed more predictors outperformed the baseline predictor, which is solely based on the amino acid frequencies. Nevertheless, the overall accuracy of predictions is still far short of positive control, which is derived from experimental scores, indicating the necessity for considerable improvements in the field. The most inaccurately predicted variants in this round were associated with the insertion loop, which is absent in many orthologs, suggesting the predictors still heavily rely on the information from multiple sequence alignment.

5.
Biomimetics (Basel) ; 9(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786470

ABSTRACT

In recent years, legged robots have been more and more widely used on non-structured terrain, and their foot structure has an important impact on the robot's motion performance and stability. The structural characteristics of the yak foot sole with a high outer edge and low middle, which has excellent soil fixation ability and is an excellent bionic prototype, can improve the friction between the foot and the ground. At the same time, the foot hooves can effectively alleviate the larger impact load when contacting with the ground, which is an excellent anti-slip buffer mechanism. The bionic foot end design was carried out based on the morphology of the yak sole; the bionic foot design was carried out based on the biological anatomy observation of yak foot skeletal muscles. The virtual models of the bionic foot end and the bionic foot were established and simulated using Solidworks 2022 and Abaqus 2023, and the anti-slip performance on different ground surfaces and the influence of each parameter of the bionic foot on the cushioning effect were investigated. The results show that (1) the curved shape of the yak sole has a good anti-slip performance on both soil ground and rocky ground, and the anti-slip performance is better on soil ground; (2) the curved shape of the yak sole has a larger maximum static friction than the traditional foot, and the anti-slip performance is stronger under the same pressure conditions; (3) the finger pillow-hoof ball structure of the bionic foot has the greatest influence on the buffering effect, and the buffering effect of the bionic foot is best when the tip of the bionic foot touches the ground first.

6.
Sci Rep ; 14(1): 12260, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806511

ABSTRACT

Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.


Subject(s)
Bacterial Proteins , Genome, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Protein Domains
7.
Proteins ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775337

ABSTRACT

A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.

8.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645026

ABSTRACT

Identification of bacterial protein-protein interactions and predicting the structures of the complexes could aid in the understanding of pathogenicity mechanisms and developing treatments for infectious diseases. Here, we developed a deep learning-based pipeline that leverages residue-residue coevolution and protein structure prediction to systematically identify and structurally characterize protein-protein interactions at the proteome-wide scale. Using this pipeline, we searched through 78 million pairs of proteins across 19 human bacterial pathogens and identified 1923 confidently predicted complexes involving essential genes and 256 involving virulence factors. Many of these complexes were not previously known; we experimentally tested 12 such predictions, and half of them were validated. The predicted interactions span core metabolic and virulence pathways ranging from post-transcriptional modification to acid neutralization to outer membrane machinery and should contribute to our understanding of the biology of these important pathogens and the design of drugs to combat them.

9.
Proc Natl Acad Sci U S A ; 121(17): e2319726121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630713

ABSTRACT

The Ornate Moth, Utetheisa ornatrix, has served as a model species in chemical ecology studies for decades. Like in the widely publicized stories of the Monarch and other milkweed butterflies, the Ornate Moth and its relatives are tropical insects colonizing whole continents assisted by their chemical defenses. With the recent advances in genomic techniques and evo-devo research, it is becoming a model for studies in other areas, from wing pattern development to phylogeography, from toxicology to epigenetics. We used a genomic approach to learn about Utetheisa's evolution, detoxification, dispersal abilities, and wing pattern diversity. We present an evolutionary genomic analysis of the worldwide genus Utetheisa, then focusing on U. ornatrix. Our reference genome of U. ornatrix reveals gene duplications in the regions possibly associated with detoxification abilities, which allows them to feed on toxic food plants. Finally, comparative genomic analysis of over 100 U. ornatrix specimens from the museum with apparent differences in wing patterns suggest the potential roles of cortex and lim3 genes in wing pattern formation of Lepidoptera and the utility of museum-preserved collection specimens for wing pattern research.


Subject(s)
Butterflies , Moths , Animals , Moths/genetics , Butterflies/genetics , Genomics , Wings, Animal
10.
Biomimetics (Basel) ; 9(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667217

ABSTRACT

To date, research on abalone adhesion has primarily analyzed the organism's adhesion to smooth surfaces, with few studies on adhesion to non-smooth surfaces. The present study examined the surface morphology of the abalone's abdominal foot, followed by measuring the adhesive force of the abalone on a smooth force measuring plate and five force measuring plates with different surface morphologies. Next, the adhesion mechanism of the abdominal foot was analyzed. The findings indicated that the abdominal foot of the abalone features numerous stripe-shaped folds on its surface. The adhesion of the abalone to a fine frosted glass plate, a coarse frosted glass plate, and a quadrangular conical glass plate was not significantly different from that on a smooth glass plate. However, the organism's adhesion to a small lattice pit glass plate and block pattern glass plate was significantly different. The abalone could effectively adhere to the surface of the block pattern glass plate using the elasticity of its abdominal foot during adhesion but experienced difficulty in completely adhering to the surface of the quadrangular conical glass plate. The abdominal foot used its elasticity to form an independent sucker system with each small lattice pit, significantly improving adhesion to the small lattice pit glass plate. The elasticity of the abalone's abdominal foot created difficulty in handling slight morphological size changes in roughness, resulting in no significant differences in its adhesion to the smooth glass plate.

11.
Biomolecules ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540766

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder characterized by abnormal bone formation due to ACVR1 gene mutations. The identification of the molecular mechanisms underlying the ectopic bone formation and expansion in FOP is critical for the effective treatment or prevention of HO. Here we find that Hh signaling activation is required for the aberrant ectopic bone formation in FOP. We show that the expression of Indian hedgehog (Ihh), a Hh ligand, as well as downstream Hh signaling, was increased in ectopic bone lesions in Acvr1R206H; ScxCre mice. Pharmacological treatment with an Ihh-neutralizing monoclonal antibody dramatically reduced chondrogenesis and ectopic bone formation. Moreover, we find that the activation of Yap in the FOP mouse model and the genetic deletion of Yap halted ectopic bone formation and decreased Ihh expression. Our mechanistic studies showed that Yap and Smad1 directly bind to the Ihh promoter and coordinate to induce chondrogenesis by promoting Ihh expression. Therefore, the Yap activation in FOP lesions promoted ectopic bone formation and expansion in both cell-autonomous and non-cell-autonomous manners. These results uncovered the crucial role of the Yap-Ihh axis in FOP pathogenesis, suggesting the inhibition of Ihh or Yap as a potential therapeutic strategy to prevent and reduce HO.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Animals , Mice , Chondrogenesis , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mutation , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Myositis Ossificans/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/pathology , Osteogenesis , YAP-Signaling Proteins/metabolism
12.
PLoS Comput Biol ; 20(2): e1011586, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416793

ABSTRACT

Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets.


Subject(s)
Biological Evolution , Proteome , Protein Domains , Evolution, Molecular , Bacteria , Databases, Protein
13.
Macromol Rapid Commun ; 45(2): e2300484, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37704216

ABSTRACT

The imitation of mussels and oysters to create high-performance adhesives is a cutting-edge field. The introduction of inorganic fillers is shown to significantly alter the adhesive's properties, yet the potential of mesoporous materials as fillers in adhesives is overlooked. In this study, the first report on the utilization of mesoporous materials in a biomimetic adhesive system is presented. Incorporating mesoporous silica nanoparticles (MSN) profoundly enhances the adhesion of pyrogallol (PG)-polyethylene imine (PEI) adhesive. As the MSN concentration increases, the adhesion strength to glass substrates undergoes an impressive fivefold improvement, reaching an outstanding 2.5 mPa. The adhesive forms an exceptionally strong bond, to the extent that the glass substrate fractures before joint failure. The comprehensive tests involving various polyphenols, polymers, and fillers reveal an intriguing phenomenon-the molecular structure of polyphenols significantly influences adhesive strength. Steric hindrance emerges as a crucial factor, regulating the balance between π-cation and charge interactions, which significantly impacts the multicomponent assembly of polyphenol-PEI-MSN and, consequently, adhesive strength. This groundbreaking research opens new avenues for the development of novel biomimetic materials.


Subject(s)
Biomimetic Materials , Bivalvia , Animals , Adhesives/chemistry , Biomimetic Materials/chemistry , Polymers/chemistry , Glass
14.
FEBS Open Bio ; 14(1): 112-126, 2024 01.
Article in English | MEDLINE | ID: mdl-37964489

ABSTRACT

Renal cell carcinoma (RCC) is the most common type of kidney cancer with rising cases in recent years. Extensive research has identified various cancer driver proteins associated with different subtypes of RCC. Most RCC drivers are encoded by tumor suppressor genes and exhibit enrichment in functional categories such as protein degradation, chromatin remodeling, and transcription. To further our understanding of RCC, we utilized powerful deep-learning methods based on AlphaFold to predict protein-protein interactions (PPIs) involving RCC drivers. We predicted high-confidence complexes formed by various RCC drivers, including TCEB1, KMT2C/D and KDM6A of the COMPASS-related complexes, TSC1 of the MTOR pathway, and TRRAP. These predictions provide valuable structural insights into the interaction interfaces, some of which are promising targets for cancer drug design, such as the NRF2-MAFK interface. Cancer somatic missense mutations from large datasets of genome sequencing of RCCs were mapped to the interfaces of predicted and experimental structures of PPIs involving RCC drivers, and their effects on the binding affinity were evaluated. We observed more than 100 cancer somatic mutations affecting the binding affinity of complexes formed by key RCC drivers such as VHL and TCEB1. These findings emphasize the importance of these mutations in RCC pathogenesis and potentially offer new avenues for targeted therapies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Mutation , Mutation, Missense
15.
Insects ; 14(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38132616

ABSTRACT

The genus Colias Fabricius, 1807 includes numerous taxa and forms with uncertain status and taxonomic position. Among such taxa are Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897, interpreted in the literature either as conspecific forms, as subspecies of different but morphologically somewhat similar Colias species or as distinct species-level taxa. Based on mitochondrial and nuclear DNA markers, we reconstructed a phylogeographic pattern of the taxa in question. We recover and include in our analysis DNA barcodes of the century-old type specimens, the lectotype of C. tamerlana deposited in the Natural History Museum (Museum für Naturkunde), Berlin, Germany (ZMHU) and the paralectotype of C. tamerlana and the lectotype of C. mongola deposited in the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP). Our analysis grouped all specimens within four (HP_I-HP_IV) deeply divergent but geographically poorly structured clades which did not support nonconspecifity of C. mongola-C. tamerlana. We also show that all studied females of the widely distributed haplogroup HP_II were infected with a single Wolbachia strain belonging to the supergroup B, while the males of this haplogroup, as well as all other investigated specimens of both sexes, were not infected. Our data highlight the relevance of large-scale sampling dataset analysis and the need for testing for Wolbachia infection to avoid erroneous phylogenetic reconstructions and species misidentification.

16.
mSystems ; 8(6): e0079623, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38014954

ABSTRACT

IMPORTANCE: The pandemic Vpar strain RIMD causes seafood-borne illness worldwide. Previous comparative genomic studies have revealed pathogenicity islands in RIMD that contribute to the success of the strain in infection. However, not all virulence determinants have been identified, and many of the proteins encoded in known pathogenicity islands are of unknown function. Based on the EOCD database, we used evolution-based classification of structure models for the RIMD proteome to improve our functional understanding of virulence determinants acquired by the pandemic strain. We further identify and classify previously unknown mobile protein domains as well as fast evolving residue positions in structure models that contribute to virulence and adaptation with respect to a pre-pandemic strain. Our work highlights key contributions of phage in mediating seafood born illness, suggesting this strain balances its avoidance of phage predators with its successful colonization of human hosts.


Subject(s)
Vibrio parahaemolyticus , Humans , Virulence/genetics , Vibrio parahaemolyticus/genetics , Virulence Factors/genetics , Genomics
17.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37683634

ABSTRACT

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Subject(s)
Bacteria , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Metagenome , Metagenomics , Phylogeny , Actinobacteria/physiology
18.
Protein Sci ; 32(10): e4764, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632170

ABSTRACT

Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.

19.
Zootaxa ; 5271(1): 91-114, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37518143

ABSTRACT

Genomic sequencing (or morphology when indicated) and analysis of Hesperiidae that includes a number of primary type specimens reveals inconsistencies between the phylogenetic trees and the current classification that are resolved here. The following taxonomic changes are proposed. Oeonus Godman, 1900, stat. nov. is a subgenus of Oxynthes Godman, 1900. Decinea lydora (Plötz, 1882), stat. rev. is a valid species, not a synonym of Lindra neroides (Herrich-Schäffer, 1869), comb. nov. The following are: species-level taxa, not subspecies: Cabirus junta Evans, 1952, stat. nov. and Cabirus purda Evans, 1952, stat. nov. (not Cabirus procas (Cramer, 1777)), Orthos hyalinus (E. Bell, 1930), stat. rest. and Orthos minka Evans, 1955, stat. nov. (not Orthos orthos (Godman, 1900)), Eprius obrepta (Kivirikko, 1936), stat. rest. (not Eprius veleda (Godman, 1901)), Corra catargyra (C. Felder & R. Felder, 1867), stat. rest. and Corra conka (Evans, 1955), stat. nov. (not Corra coryna (Hewitson, 1866)), Cymaenes macintyrei Hayward, 1939, stat. rest. (not Cymaenes tripunctata (Latreille, [1824])), Duroca lenta (Evans, 1955), stat. rest. (not Duroca duroca Plötz, 1882), Oarisma (Copaeodes) favor (Evans, 1955), stat. nov. (not Oarisma (Copaeodes) jean (Evans, 1955)), Panoquina eugeon (Godman & Salvin, 1896), stat. rest., Panoquina calna Evans, 1955, stat. nov. and Panoquina albistriga O. Mielke, 1980, stat. nov. (not Panoquina panoquinoides (Skinner, 1891)); subspecies-level taxa, not species: Carystus elvira rufoventris Austin & O. Mielke, 2007, stat. nov.; junior subjective synonyms: Bungalotis gagarini O. Mielke, 1967, syn. nov. of Bungalotis corentinus (Plötz, 1882), Salantoia dinka (Evans, 1952), syn. nov. of Adina adrastor (Mabille and Boullet, 1912), Lindra brasus ackeryi O. Mielke, 1978, stat. nov. of Lindra neroides neroides (Herrich-Schäffer, 1869) (but Lindra brasus (O. Mielke, 1968) is still a valid species), Vidius felus O. Mielke, 1968, syn. nov. of Vidius dagon (Evans, 1955), comb. nov., and Cobalopsis dorpa de Jong, 1983, syn. nov. of Vidius catocala (Herrich-Schäffer, 1869), comb. nov.; new genus-species combinations: Oxynthes (Oxynthes) egma (Evans, 1955), comb. nov. (not Oeonus Godman, 1900), Lindra neroides (Herrich-Schäffer, 1869), comb. nov. (not Decinea Evans, 1955), Mucia rusta (Evans, 1955), comb. nov. (not Psoralis Mabille, 1904), Rhomba mirnae (Siewert, Nakamura & O. Mielke, 2014), comb. nov. (not Alychna Grishin, 2019), Eprius planus (Weeks, 1901), comb. nov. and Eprius penna (Evans, 1955), comb. nov. (changed based on morphology) (not Mnasicles Godman, 1901), Lattus minor (O. Mielke, 1967), comb. nov. (not Eutocus Godman, 1901), Panca fiedleri (Carneiro, O. Mielke & Casagrande, 2015), comb. nov., Eutocus rogan (Evans, 1955), comb. nov. (changed based on morphology and cytochrome c oxidase subunit I (COI) DNA barcode) and Eutocus brasilia (Carneiro, O. Mielke & Casagrande, 2015), comb. nov. (not Ginungagapus Carneiro, O. Mielke & Casagrande, 2015), Eutocus fosca (Evans, 1955), comb. nov. (not Artines Godman, 1901), Rectava cascatona (O. Mielke, 1992), comb. nov. (not Papias Godman, 1900), Lurida zama (Hayward, 1939), comb. nov. and Vehilius campestris (O. Mielke, 1980), comb. nov. (not Cymaenes Scudder, 1872), Corra xanthus (O. Mielke, 1989), comb. nov., Cymaenes catarinae (O. Mielke, 1989), comb. nov., Vehilius spitzi (O. Mielke, 1967), comb. nov., Vehilius tinta (Evans, 1955), comb. nov. (not Vidius Evans, 1955), Cymaenes incomptus (Hayward, 1934), comb. nov. and Vehilius tanta (Evans, 1955), comb. nov. (not Nastra Evans, 1955), Vidius catocala (Herrich-Schäffer, 1869), comb. nov. Vidius cocalus (Hayward, 1939), comb. nov., Vidius dagon (Evans, 1955), and Vidius obscurior (Hayward, 1934), comb. nov. (not Cobalopsis Godman, 1900), Duroca caraca (O. Mielke, 1992), comb. nov. (not Lerema Scudder, 1872), and Cantha eteocla (Plötz, 1882), comb. nov. and Cantha buriti (O. Mielke, 1968), comb. nov. (not Phlebodes Hübner, [1819]); and new species-subspecies combinations: Lindra neroides huxleyi O. Mielke, 1978, comb. nov. (not Lindra brasus (O. Mielke, 1968)), Corra conka argentus (H. Freeman, 1969), stat. nov. (not Corra coryna (Hewitson, 1866)), Panoquina eugeon minima de Jong, 1983, comb. nov. (not Panoquina panoquinoides (Skinner, 1891)). The following neotype and lectotypes are designated to ensure nomenclatural identity and stability: neotype of Cobalus neroides Herrich-Schäffer, 1869 and lectotypes of Cobalus catocala Herrich-Schäffer, 1869 and Lerema elgina Schaus, 1902.


Subject(s)
Butterflies , Lepidoptera , Rubiaceae , Animals , Phylogeny
20.
Zootaxa ; 5319(4): 573-581, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37518211

ABSTRACT

Genomic sequencing and analysis of holotypes from the MIZA collection (Maracay, Venezuela) and their comparison with other species and their type specimens advances our understanding of their taxonomy. Jemadia demarmelsi Orellana, [2010] is confirmed as a species-level taxon and its female is genetically verified. The following are species-level taxa, not subspecies: Amenis pedro O. Mielke & Casagrande, 2022, stat. nov. (not Amenis pionia (Hewitson, 1857)) and Jemasonia sosia (Mabille, 1878), stat. rest. (not Jemasonia hewitsonii (Mabille, 1878)). Amenis ponina rogeri Orellana, [2010], stat. nov. and Jemasonia pater ortizi (Orellana, [2010]), stat. nov. are subspecies, not species. Jemadia pseudognetus imitator (Mabille, 1891), comb. nov. (not Jemadia hospita (Butler, 1877)) and Damas cervelina Orellana & Costa, 2019, comb. nov. (not Megaleas Godman, 1901) are new combinations.

SELECTION OF CITATIONS
SEARCH DETAIL