Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 16482-16493, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506366

ABSTRACT

The interfacial pyro-phototronic effect (IPPE) presents a novel approach for improving the performance of self-powered photodetectors (PDs) based on metal halide perovskites (MHPs). The interfacial contact conditions within the Schottky junctions are crucial in facilitating the IPPE phenomenon. However, the fabrication of an ideal Schottky junction utilizing MHPs is a challenging endeavor. In this study, we present a surface passivation method aimed at enhancing the performance of self-powered photodetectors based on inverted planar perovskite structures in micro- and nanoscale metal-halide perovskite SCs. Our findings demonstrate that the incorporation of a lead halide salt with a benzene ring moiety for surface passivation leads to a substantial improvement in photoresponses by means of the IPPE. Conversely, the inclusion of an alkane chain in the salt impedes the IPPE. The underlying mechanism can be elucidated through an examination of the band structure, particularly the work function (WF) modulated by surface passivation. Consequently, this alteration affects the band bending and the built-in field (VBi) at the interface. This strategy presents a feasible and effective method for producing interfacial pyroelectricity in MHPs, thus facilitating its potential application in practical contexts such as energy conversion and infrared sensors.

2.
Adv Mater ; 35(47): e2301705, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683840

ABSTRACT

Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.

3.
Opt Express ; 30(21): 38492-38502, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258413

ABSTRACT

Study of exciton recombination process is of great significance for the optoelectronic device applications of two-dimensional transition metal chalcogenides (TMDCs). This research investigated the decoupling MoS2 structures by photoluminescence (PL) measurements. First, PL intensity of the bilayer MoS2 (BLM) is about twice of that of the single layer MoS2 (SLM) at low temperature, indicating no transition from direct bandgap to indirect bandgap for BLM due to the decrease of interlayer coupling which can be shown by Raman spectra. Then, the localized exciton emission appears for SLM at 7 K but none for BLM, showing different exciton localization characteristics. The PL evolution with respect to the excitation intensity and the temperature further reveal the filling, interaction, and the redistribution among free exciton states and localized exciton states. These results provide very useful information for understanding the localized states and carrier dynamics in BLM and SLM.

4.
Nano Lett ; 22(20): 8241-8249, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36215318

ABSTRACT

Metal halide perovskite ferroelectrics possess various physical characteristics such as piezoelectric and pyroelectric effects, which could broaden the application of perovskite ferroelectrics and enhance the optoelectronic performance. Therefore, it is promising to combine multiple effects to optimize the performance of the self-powered PDs. Herein, patterned 2D ferroelectric perovskite (PMA)2PbCl4 microbelt arrays were demonstrated through a PDMS template-assisted antisolvent crystallization method. The perovskite arrays based flexible photodetectors exhibited fine self-powered photodetection performance under 320 nm illumination and much enhanced reproducibility compared with the randomly distributed single-crystal microbelts-based PDs. Furthermore, by introducing the piezo-phototronic effect, the performance of the flexible PD was greatly enhanced. Under an external tensile strain of 0.71%, the responsivity was enhanced by 185% from 84 to 155.5 mA/W. Our findings offer the advancement of comprehensively utilizing various physical characteristics of the ferroelectrics for novel ferroelectric optoelectronics.


Subject(s)
Oxides , Zinc Oxide , Reproducibility of Results , Calcium Compounds , Zinc Oxide/chemistry
5.
RSC Adv ; 12(20): 12753-12759, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480349

ABSTRACT

The passivation properties of a polysilicon (poly-Si) thin film are the key for improving the photovoltaic performance of TOPCon silicon solar cells. In this work, we investigate the influence of the poly-Si microstructure on the interface passivation and photovoltaic performance in TOPCon solar cells. The poly-Si thin films are prepared from phosphorus-doped hydrogenated microcrystalline silicon (µc-Si:H) layers deposited via plasma enhanced chemical vapor deposition (PECVD) under different hydrogen dilutions and recrystallized by high temperature post-deposition annealing. The results revealed that, as the hydrogen dilution ratio increases, the microstructure of the pre-deposited films transforms from an amorphous phase to a microcrystalline phase. Meanwhile, the effective minority carrier lifetime of the symmetrically passivated contact structure shows a maximum value of 1.75 ms, implying that the efficient passivation at the c-Si interface is obtained which is mainly attributed to the joint enhancement of the improved field effect passivation from poly-Si films and the reduced defects density on the silicon surface. Consequently, the devices displayed excellent rectification behavior with a rectifying ratio of 3 × 105, ascribed to the enhanced carrier transport with the high quality poly-Si film pre-deposited in the initial region of structural transition. Correspondingly, the obvious improvement of TOPCon solar cell performance was achieved, exhibiting an optimized conversion efficiency of 17.91%. The results provide an optimal design scheme for enhancing the photovoltaic properties of the TOPCon silicon solar cells.

6.
ACS Appl Mater Interfaces ; 14(16): 19012-19022, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35421305

ABSTRACT

Recently, two-dimensional (2D) van der Waals heterostructures (vdWHs) have exhibited emergent electronic and optical properties due to their peculiar phonons and excitons, which lay the foundation for the development of photoelectronic devices. The dielectric environment plays an important role in the interlayer coupling of vdWHs. Here, we studied the interlayer and extra-layer dielectric effects on phonon and exciton properties in WS2/MoS2 and MoS2/WS2 vdWHs by Raman and photoluminescence (PL) spectroscopy. The ultralow frequency (ULF) Raman modes are insensitive to atomic arrangement at the interface between 1LW and 1LM and dielectric environments of neighboring materials, and the layer breathing mode (LBM) frequency follows that of WS2. The shift of high-frequency (HF) Raman modes is attributable to interlayer dielectric screening and charge transfer effects. Furthermore, the energy of interlayer coupling exciton peak I is insensitive to atomic arrangement at the interface between 1LW and 1LM and its energy follows that of MoS2, but the slight intensity difference in inversion vdWHs means that the substrate's dielectric properties may induce doping on the bottom layer. This paper provides fundamental understanding of phonon and exciton properties of such artificially formed vdWHs structures, which is important for new insights into manipulating the performances of potential devices.

7.
Opt Express ; 29(21): 32818-32825, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809104

ABSTRACT

Angle-resolved polarized (ARP) Raman spectroscopy can be utilized to characterize the Raman modes of two-dimensional layered materials based on crystal symmetry or crystal orientation. In this paper, the polarization properties of E 1 2g and A1g modes on the basal plane and edge plane of high purity 2H-MoS2 bulk crystal grown by chemical vapor transport (CVT) method were investigated by ARP Raman spectroscopy. The I and II type ARP Raman spectroscopy with four kinds of polarization configurations: αY, αX, ßY, and ßX were used to explore the intensity dependence of E 1 2g and A1g modes at different planes on the polarization direction of incident/scattered light. The results show that the E 1 2g and A1g modes exhibit different polarization properties dependent on the polarization of the incident laser and the in-plane rotation of the sample at different planes. The experimental results were confirmed and analyzed through theoretical calculation. Our work sheds light on the intriguing effect of the subtle atomic structure in stacked MoS2 layers on the resulting ARP Raman properties. This provides a reference for the study of other two-dimensional layered crystalline materials by ARP Raman spectroscopy.

8.
Adv Sci (Weinh) ; 5(2): 1700502, 2018 02.
Article in English | MEDLINE | ID: mdl-29619301

ABSTRACT

MoS2, as a typical transition metal dichalcogenide, has attracted great interest because of its distinctive electronic, optical, and catalytic properties. However, its advantages of strong light absorption and fast intralayer mobility cannot be well developed in the usual reported monolayer/few-layer structures, which make the performances of MoS2-based devices undesirable. Here, large-area, high-quality, and vertically oriented few-layer MoS2 (V-MoS2) nanosheets are prepared by chemical vapor deposition and successfully transferred onto an Si substrate to form the V-MoS2/Si heterojunction. Because of the strong light absorption and the fast carrier transport speed of the V-MoS2 nanosheets, as well as the strong built-in electric field at the interface of V-MoS2 and Si, lateral photovoltaic effect (LPE) measurements suggest that the V-MoS2/Si heterojunction is a self-powered, high-performance position sensitive detector (PSD). The PSD demonstrates ultrahigh position sensitivity over a wide spectrum, ranging from 350 to 1100 nm, with position sensitivity up to 401.1 mV mm-1, and shows an ultrafast response speed of 16 ns with excellent stability and reproducibility. Moreover, considering the special carrier transport process in LPE, for the first time, the intralayer and the interlayer transport times in V-MoS2 are obtained experimentally as 5 and 11 ns, respectively.

9.
ACS Appl Mater Interfaces ; 9(21): 18377-18387, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28492306

ABSTRACT

Molybdenum disulfide (MoS2), as a typical two-dimensional (2D) material, has attracted extensive attention in recent years because of its fascinating optical and electric properties. However, the applications of MoS2 have been mainly in photovoltaic devices, field-effect transistors, photodetectors, and gas sensors. Here, it is demonstrated that MoS2 can be found another important application in position sensitive detector (PSD) based on lateral photovoltaic effect (LPE) in it. The ITO/MoS2(3, 5, 7, 9, 10, 20, 50, 100 nm)/p-Si heterojunctions were successfully prepared with vertically standing nanosheet structure of MoS2. Because of the special structure and the strong light absorption of the relatively thick MoS2 film, the ITO/MoS2/p-Si heterojunction exhibits an abnormal thickness-dependent LPE, which can be ascribed to the n- to p-type transformation of MoS2. Moreover, the LPE of ITO/MoS2/p-Si structure improves greatly because of forward enhanced built-in field by type transformation in a wide spectrum response ranging from visible to near-infrared, especially the noticeable improvement in infrared region, indicating its great potential application in infrared PSDs. This work not only suggest that the ITO/MoS2/p-Si heterojunction shows great potential in LPE-based sensors, but also unveils the importance of type transformation of MoS2 in MoS2-based photoelectric devices besides strong light absorption and suitable bandgap.

10.
ACS Appl Mater Interfaces ; 8(6): 4062-8, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26791442

ABSTRACT

We use a pH-dependent solubility equilibrium to develop a one-pot aqueous synthesis of polymer carbon nanodots with novel structures. The chemical structure and photoluminescence (PL) were heavily influenced by the synthesis pH, with cross-linked polymer-carbon film (pH > 7), polymer carbon nanosheets (3 < pH < 7), and amorphous carbon structures (1 < pH < 3) achieved by altering the initial pH. Although pH-dependent structures frequently occur in typical semiconductors and supramolecular architectures involving metal, this is the first experimental work describing it in carbon nanodots. Supersmall carbon nanodots (SCNDs, ∼0.5 nm) were obtained at pH < 1; their direct white emission can be easily applied as an inexpensive color-changing layer in white LEDs. Investigation of the PL mechanism of the SCNDs revealed an uncommon multilevel highly emissive recombination channel, which could be possibly derived from the wide distributions of surface-state PL centers. Theoretical calculation of the single layer of the carbon dots further explored their band gap changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...