Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Commun Chem ; 7(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172567

ABSTRACT

In situ structures of Platinum (Pt) nanoparticles (NPs) can be determined with graphene liquid cell transmission electron microscopy. Atomic-scale three-dimensional structural information about their physiochemical properties in solution is critical for understanding their chemical function. We here analyze eight atomic-resolution maps of small (<3 nm) colloidal Pt NPs. Their structures are composed of an ordered crystalline core surrounded by surface atoms with comparatively high mobility. 3D reconstructions calculated from cumulative doses of 8500 and 17,000 electrons/pixel, respectively, are characterized in terms of loss of atomic densities and atomic displacements. Less than 5% of the total number of atoms are lost due to dissolution or knock-on damage in five of the structures analyzed, whereas 10-16% are lost in the remaining three. Less than 5% of the atomic positions are displaced due to the increased electron irradiation in all structures. The surface dynamics will play a critical role in the diverse catalytic function of Pt NPs and must be considered in efforts to model Pt NP function computationally.

2.
ACS Synth Biol ; 13(1): 259-268, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38091519

ABSTRACT

Short-chain esters are versatile chemicals that can be used as flavors, fragrances, solvents, and fuels. The de novo ester biosynthesis consists of diverging and converging pathway submodules, which is challenging to engineer to achieve optimal metabolic fluxes and selective product synthesis. Compartmentalizing the pathway submodules into specialist cells that facilitate pathway modularization and labor division is a promising solution. Here, we engineered a synthetic Escherichia coli coculture with the compartmentalized sugar utilization and ester biosynthesis pathways to produce isobutyl butyrate from a mixture of glucose and xylose. To compartmentalize the sugar-utilizing pathway submodules, we engineered a xylose-utilizing E. coli specialist that selectively consumes xylose over glucose and bypasses carbon catabolite repression (CCR) while leveraging the native CCR machinery to activate a glucose-utilizing E. coli specialist. We found that the compartmentalization of sugar catabolism enabled simultaneous co-utilization of glucose and xylose by a coculture of the two E. coli specialists, improving the stability of the coculture population. Next, we modularized the isobutyl butyrate pathway into the isobutanol, butyl-CoA, and ester condensation submodules, where we distributed the isobutanol submodule to the glucose-utilizing specialist and the other submodules to the xylose-utilizing specialist. Upon compartmentalization of the isobutyl butyrate pathway submodules into these sugar-utilizing specialist cells, a robust synthetic coculture was engineered to selectively produce isobutyl butyrate, reduce the biosynthesis of unwanted ester byproducts, and improve the production titer as compared to the monoculture.


Subject(s)
Butanols , Escherichia coli , Sugars , Escherichia coli/genetics , Escherichia coli/metabolism , Sugars/metabolism , Xylose/metabolism , Butyrates/metabolism , Coculture Techniques , Metabolic Engineering , Glucose/metabolism , Esters/metabolism
3.
ACS Infect Dis ; 9(12): 2494-2503, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37955405

ABSTRACT

The emergence of virulent, resistant, and rapidly evolving fungal pathogens poses a significant threat to public health, agriculture, and the environment. Targeting cellular processes with standard small-molecule intervention may be effective but requires long development times and is prone to antibiotic resistance. To overcome the current limitations of antibiotic development and treatment, this study harnesses CRISPR-Cas systems as antifungals by capitalizing on their adaptability, specificity, and efficiency in target design. The conventional design of CRISPR-Cas antimicrobials, based on induction of DNA double-strand breaks (DSBs), is potentially less effective in fungi due to robust eukaryotic DNA repair machinery. Here, we report a novel design principle to formulate more effective CRISPR-Cas antifungals by cotargeting essential genes with DNA repair defensive genes that remove the fungi's ability to repair the DSB sites of essential genes. By evaluating this design on the model fungus Saccharomyces cerevisiae, we demonstrated that essential and defensive gene cotargeting is more effective than either essential or defensive gene targeting alone. The top-performing CRISPR-Cas antifungals performed as effectively as the antibiotic Geneticin. A gene cotargeting interaction analysis revealed that cotargeting essential genes with RAD52 involved in homologous recombination (HR) was the most synergistic combination. Fast growth kinetics of S. cerevisiae induced resistance to CRISPR-Cas antifungals, where genetic mutations mostly occurred in defensive genes and guide RNA sequences.


Subject(s)
Antifungal Agents , CRISPR-Cas Systems , Antifungal Agents/pharmacology , Saccharomyces cerevisiae/genetics , RNA, Guide, CRISPR-Cas Systems , DNA Repair , Anti-Bacterial Agents
4.
Zhonghua Xin Xue Guan Bing Za Zhi ; 51(10): 1056-1062, 2023 Oct 24.
Article in Chinese | MEDLINE | ID: mdl-37859357

ABSTRACT

Objective: We aimed to determine the epidemiological characteristics of asymptomatic AF in elder community population (≥65 years old) to analyze the detection rate of different screening methods. Methods: The study was a prospective cohort study. The elder (≥65 years old) residents who voluntarily participated in free physical examination in Dalian community were selected. The participants were randomly divided into screening group (including intensive screening group and single screening group) and control group. The control group received interrogation, medical history collection and routine 12-lead electrocardiogram (ECG) examination. Screening group received an additional single-lead ambulatory ECG equipment worn for 5-7 days. Intensive screening group received two equal-length wearings in 2020 and 2021 respectively, while one screening group only wore once in 2020. Results: Finally 3 340 residents ((70.7±5.0) years old) which consisted of 1 488 males (44.55%) were enrolled. There were 1 945 residents in screening group, including 859 in intensive screening group and 1 086 in one-time screening group. The control group included 1 395 people. Detection rate of asymptomatic AF was significantly higher in screening group than control group (79(4.06%) vs. 24(1.72%), P<0.001). Higher detection rate was found in screening group than control group in AF risk factors (1 or 2-3) subgroups and CHA2DS2-VASc score (2-3 or≥4) subgroups (P<0.05). Additionally, no difference was found between intensive screening group and single screening group (42(4.89%) vs. 37(3.41%), P=0.100). Intensive screening increased detection rate (7(6.93%) vs. 1(0.58%), P=0.009) only in residents those with low thrombosis risk (CHA2DS2-VaSc<2). Conclusions: Screening in elderly (≥65 years old) can significantly improve the detection rate of asymptomatic AF by wearing single lead dynamic ECG device. The rate increased significantly with the increase of risk factors associated with AF by single screening. In addition, repeat screening of the same method may only improve detection rates in the group with low risk thrombotic scores and non-combination of AF risk factors.Screening methods that are appropriate for different populations may require further exploration.


Subject(s)
Atrial Fibrillation , Stroke , Male , Humans , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Prospective Studies , Electrocardiography , Risk Factors , Risk Assessment , Mass Screening/adverse effects , Mass Screening/methods
5.
mSystems ; 8(6): e0074123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37882587

ABSTRACT

IMPORTANCE: Sustainable processes for biological upcycling of plastic wastes in a circular bioeconomy are needed to promote decarbonization and reduce environmental pollution due to increased plastic consumption, incineration, and landfill storage. Strain characterization and proteomic analysis revealed the robust metabolic capabilities of Yarrowia lipolytica to upcycle polyethylene into high-value chemicals. Significant proteome reallocation toward energy and lipid metabolisms was required for robust growth on hydrocarbons with n-hexadecane as the preferential substrate. However, an apparent over-investment in these same categories to utilize complex depolymerized plastic (DP) oil came at the expense of protein biosynthesis, limiting cell growth. Taken together, this study elucidates how Y. lipolytica activates its metabolism to utilize DP oil and establishes Y. lipolytica as a promising host for the upcycling of plastic wastes.


Subject(s)
Yarrowia , Proteome/metabolism , Polyethylene/metabolism , Proteomics , Lipid Metabolism
7.
Bioresour Technol ; 384: 129263, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37271458

ABSTRACT

Consolidated bioprocessing (CBP) of lignocellulosic biomass uses cellulolytic microorganisms to enable enzyme production, saccharification, and fermentation to produce biofuels, biochemicals, and biomaterials in a single step. However, understanding and redirecting metabolisms of these microorganisms compatible with CBP are limited. Here, a cellulolytic thermophile Clostridium thermocellum was engineered and demonstrated to be compatible with CBP integrated with a Co-solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment for conversion of hardwood poplar into short-chain esters with industrial use as solvents, flavors, fragrances, and biofuels. The recombinant C. thermocellum engineered with deletion of carbohydrate esterases and stable overexpression of alcohol acetyltransferases improved ester production without compromised deacetylation activities. These esterases were discovered to exhibit promiscuous thioesterase activities and their deletion enhanced ester production by rerouting the electron and carbon metabolism. Ester production was further improved up to 80-fold and ester composition could be modulated by deleting lactate biosynthesis and using poplar with different pretreatment severity.


Subject(s)
Clostridium thermocellum , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Biomass , Biofuels , Lignin/chemistry , Fermentation , Solvents/metabolism
8.
Sci Rep ; 13(1): 1814, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725868

ABSTRACT

Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.

9.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(2): 273-280, 2023 Feb 06.
Article in Chinese | MEDLINE | ID: mdl-36797588

ABSTRACT

Objective: To investigate the clinical efficacy and safety of anti-IgE monoclonal antibody (omazumab) in the treatment of allergic united airway disease (UAD) in the real-wold. Methods: Retrospective cohort study summarizes the case data of patients with allergic united airway disease who were treated with anti IgE monoclonal antibody (omalizumab) for more than 16 weeks from March 1, 2018 to June 30, 2022 in the Peking University First Hospital.The allergic UAD is defined as allergic asthma combined with allergic rhinitis (AA+AR) or allergic asthma combined with chronic sinusitis with nasal polyps (AA+CRSwNP) or allergic asthma combined with allergic rhinitis and nasal polyps (AA+AR+CRSwNP). The control of asthma was evaluated by asthma control test (ACT), lung function test and fractional exhaled nitric oxide (FeNO). The AR was assessed by total nasal symptom score (TNSS). The CRSwNP was evaluated by nasal visual analogue scale (n-VAS), sino-nasal outcome test-22 (SNOT-22), nasal polyps score (TPS) and Lund-Mackay sinus CT grading system. The global evaluation of omalizumab for the treatment of allergic UADwas performed by Global Evaluation of Treatment Effectiveness(GETE).The drug-related side effects were also recorded. Matched t test and Wilcoxon signed-rank test were used to compare the score changes of IgE monoclonal antibody (omazumab) before and after treatment, and multivariate logistic regression analysis was used to determine the influencing factors of IgE monoclonal antibody (omazumab) response. Results: A total of 117 patients with UAD were enrolled, ranging in age from 19 to 77 years; The median age of patients was 48.7 years; Among them, 60 were male, ranging from 19 to 77 years old, with a median age of 49.9 years; There were 57 females, ranging from 19 to 68 years old, with a median age of 47.2 years. There were 32 cases in AA+AR subgroup, 59 cases in AA+CRSwNP subgroup, and 26 cases in AA+AR+CRSwNP subgroup. The total serum IgE level was 190.5 (103.8,391.3) IU/ml. The treatment course of anti IgE monoclonal antibody was 24 (16, 32) weeks. Compared with pre-treatment, omalizumab increased ACT from 20.0 (19.5,22.0) to 24.0 (23.0,25.0) (Z=-8.537, P<0.001), increased pre-bronchodilator FEV1 from 90.2 (74.8,103.0)% predicted value to 95.4 (83.2,106.0)% predicted value (Z=-5.315,P<0.001), increased FEV1/FVC from 80.20 (66.83,88.38)% to 82.72 (71.26,92.25)% (Z=-4.483,P<0.001), decreased FeNO from(49.1±24.8) ppb to (32.8±24.4) ppb (t=5.235, P<0.001), decreased TNSS from (6.5±2.6)to (2.4±1.9) (t=14.171, P<0.001), decreased n-VAS from (6.8±1.2) to (3.4±2.0)(t=14.448, P<0.001), decreased SNOT-22 from (40.0±7.9) to (21.3±10.2)(t=15.360, P<0.001), decreased TPS from (4.1±0.8) to (2.4±1.0)(t=14.718, P<0.001) and decreased Lund-Mackay CT score from (6.0±1.3) to (3.1±1.6)(t=17.012, P<0.001). The global response rate to omalizumab was 67.5%(79/117). The response rate in AA+AR (90.6%,29/32) was significantly higher than that in AA+CRSwNP (61.0%,36/59) and AA+AR+CRSwNP (53.8%,14/26) subgroups (χ2=11.144,P=0.004). Only 4 patients (3.4%,4/117) had mild side effects. Conclusion: The real-world study showed favorable effectiveness and safety of anti-IgE monoclonal antibody for treatment of allergic UAD. To provide basis for preventing the progress and precise treatment of allergic UAD.


Subject(s)
Asthma , Nasal Polyps , Rhinitis, Allergic , Rhinitis , Sinusitis , Female , Humans , Male , Middle Aged , Young Adult , Adult , Aged , Nasal Polyps/drug therapy , Omalizumab/therapeutic use , Rhinitis/diagnosis , Rhinitis/drug therapy , Retrospective Studies , Asthma/drug therapy , Asthma/diagnosis , Rhinitis, Allergic/drug therapy , Sinusitis/diagnosis , Sinusitis/drug therapy , Antibodies, Monoclonal/therapeutic use , Chronic Disease
10.
Case Rep Ophthalmol ; 13(2): 374-381, 2022.
Article in English | MEDLINE | ID: mdl-35811767

ABSTRACT

We report the case of a 35-year-old female with combined Chiari 1 malformation and basilar invagination, who presented with intermittent conjunctival chemosis and unilateral chorioretinal folds that were temporally correlated. She denied any flashes, floaters, eye redness, or pain. She also denied nausea or vomiting. Clinical exam and optical coherence tomography imaging revealed conjunctival chemosis and chorioretinal folds in the left eye. Subsequent magnetic resonance imaging of the brain and the orbits were consistent with combined Chiari 1 malformation and basilar invagination. The unilateral and intermittent chorioretinal folds and conjunctival chemosis presentation of combined Chiari 1 malformation and basilar invagination is unusual. To the best of our knowledge, this is the first case to be reported with this unique clinical presentation. It is most important to be aware that unilateral and intermittent chorioretinal folds associated with conjunctival chemosis may be signs of intracranial disease.

11.
mSystems ; 7(4): e0034822, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862814

ABSTRACT

Microbial tolerance to organic solvents such as ionic liquids (ILs) is a robust phenotype beneficial for novel biotransformation. While most microbes become inhibited in 1% to 5% (vol/vol) IL (e.g., 1-ethyl-3-methylimidazolium acetate), we engineered a robust Yarrowia lipolytica strain (YlCW001) that tolerates a record high of 18% (vol/vol) IL via adaptive laboratory evolution. Yet, genotypes conferring high IL tolerance in YlCW001 remain to be discovered. In this study, we shed light on the underlying cellular processes that enable robust Y. lipolytica to thrive in inhibitory ILs. By using dynamic transcriptome sequencing (RNA-Seq) data, we introduced Gene Coexpression Connectivity (GeCCo) as a metric to discover genotypes conferring desirable phenotypes that might not be found by the conventional differential expression (DE) approaches. GeCCo selects genes based on their number of coexpressed genes in a subnetwork of upregulated genes by the target phenotype. We experimentally validated GeCCo by reverse engineering a high-IL-tolerance phenotype in wild-type Y. lipolytica. We found that gene targets selected by both DE and GeCCo exhibited the best statistical chance at increasing IL tolerance when individually overexpressed. Remarkably, the best combination of dual-overexpression genes was genes selected by GeCCo alone. This nonintuitive combination of genes, BRN1 and OYE2, is involved in guiding/regulating mitotic cell division, chromatin segregation/condensation, microtubule and cytoskeletal organization, and Golgi vesicle transport. IMPORTANCE Cellular robustness to cope with stressors is an important phenotype. Y. lipolytica is an industrial robust oleaginous yeast that has recently been discovered to tolerate record high concentrations of ILs, beneficial for novel biotransformation in organic solvents. However, genotypes that link to IL tolerance in Y. lipolytica are largely unknown. Due to the complex IL-tolerant phenotype, conventional gene discovery and validation based on differential gene expression approaches are time-consuming due to a large search space and might encounter a high false-discovery rate. Here, using the developed Gene Coexpression Connectivity (GeCCo) method, we identified and validated a subset of most promising gene targets conferring the IL-tolerant phenotypes and shed light on their potential mechanisms. We anticipate GeCCo being a useful method to discover the genotype-to-phenotype link.


Subject(s)
Ionic Liquids , Yarrowia , Ionic Liquids/metabolism , Yarrowia/genetics , Solvents/metabolism
12.
CRISPR J ; 5(4): 609-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35833799

ABSTRACT

Both academic and enterprise software solutions exist for designing CRISPR targets. They offer advantages when designing guide RNAs (gRNAs) but often focus on a select number of model organisms. Those that offer a wide variety of organisms can be limited in support of alternative endonucleases and downstream analyses such as multitargeting and population analyses to interrogate a microbiome. To accommodate broad CRISPR utilization, we developed a flexible platform software CRISPR Associated Software for Pathway Engineering and Research (CASPER) for gRNA generation and analysis in any organism and with any CRISPR-Cas system. CASPER combines traditional gRNA design tools with unique functions such as multiple Cas-type gRNA generation and evaluation of spacer redundancy in a single species or microbiome. The analyses have implications for strain-, species-, or genus-specific CRISPR diagnostic probe design and microbiome manipulation. The novel features of CASPER are packaged in a user-friendly interface to create a computational environment for researchers to streamline the utility of CRISPR-Cas systems.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing , RNA, Guide, Kinetoplastida/genetics , Software
13.
Curr Microbiol ; 79(7): 209, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35639194

ABSTRACT

Ammonia and nitrite treatments are the critical steps that must be done to ensure the healthy growth of aquatic animals. The nitrification process is often used for nitrogen removal purposes due to its efficiency and environmentally friendly properties. However, the varied growth rate between ammonia and nitrite-oxidizing bacteria can cause nitrite accumulation, leading to the massive mortality of aquatic animals at high concentrations. Therefore, this study aimed to integrate the fast-growing heterotrophic nitrite-reducing bacteria with nitrifying bacteria to achieve a quicker nitrite removal activity. The two denitrifying Bacillus sp. ST20 and Bacillus sp. ST26 were screened from shrimp ponds in Bac Lieu province, Vietnam. Obtained results showed that under anoxic conditions, the nitrite removal efficiency of these two strains reached 68.5-82% at nitrite initial concentration of 20 mgN-NO2/L after 72 h. Higher efficiency of over 95% was gained under oxic conditions. Hence, it enabled the use of denitrifying and nitrifying bacteria-co-immobilized carriers for ammonia oxidation and nitrite reduction simultaneously in a single-aerated bioreactor. A total of over 96% nitrogen content was removed during the bioreactor operation, despite the increase of inputting nitrogen concentration from 40 to 200 mgN/L. Moreover, the suitable conditions for bacterial growth and nitrite conversion activity of the ST20 and ST26 were detected as 15‰ salinity and 35 °C. The isolates also utilized various C-sources for growth, hence widening their applicability. The present study suggested that the isolated aerobic denitrifying bacteria are potentially used for the complete removal of nitrogen compounds from aquaculture wastewater.


Subject(s)
Bacillus , Nitrogen , Ammonia , Aquaculture , Bacteria/genetics , Denitrification , Nitrites , Water
14.
Metab Eng ; 73: 38-49, 2022 09.
Article in English | MEDLINE | ID: mdl-35561848

ABSTRACT

The one-carbon recursive ketoacid elongation pathway is responsible for making various branched-chain amino acids, aldehydes, alcohols, ketoacids, and acetate esters in living cells. Controlling selective microbial biosynthesis of these target molecules at high efficiency is challenging due to enzyme promiscuity, regulation, and metabolic burden. In this study, we present a systematic modular design approach to control proteome reallocation for selective microbial biosynthesis of branched-chain acetate esters. Through pathway modularization, we partitioned the branched-chain ester pathways into four submodules including ketoisovalerate submodule for converting pyruvate to ketoisovalerate, ketoacid elongation submodule for producing longer carbon-chain ketoacids, ketoacid decarboxylase submodule for converting ketoacids to alcohols, and alcohol acyltransferase submodule for producing branched-chain acetate esters by condensing alcohols and acetyl-CoA. By systematic manipulation of pathway gene replication and transcription, enzyme specificity of the first committed steps of these submodules, and downstream competing pathways, we demonstrated selective microbial production of isoamyl acetate over isobutyl acetate. We found that the optimized isoamyl acetate pathway globally redistributed the amino acid fractions in the proteomes and required up to 23-31% proteome reallocation at the expense of other cellular resources, such as those required to generate precursor metabolites and energy for growth and amino acid biosynthesis. From glucose fed-batch fermentation, the engineered strains produced isoamyl acetate up to a titer of 8.8 g/L (>0.25 g/L toxicity limit), a yield of 0.22 g/g (61% of maximal theoretical value), and 86% selectivity, achieving the highest titers, yields and selectivity of isoamyl acetate reported to date.


Subject(s)
Esters , Proteome , Acetates/metabolism , Alcohols/metabolism , Amino Acids/genetics , Carbon , Esters/metabolism , Keto Acids/metabolism , Proteome/genetics
15.
Case Rep Ophthalmol ; 13(3): 770-776, 2022.
Article in English | MEDLINE | ID: mdl-36845458

ABSTRACT

We describe the clinical features and treatment outcome of a patient with combined central retinal vein occlusion and cilioretinal artery occlusion. A 52-year-old female presented to our clinic with decreased vision in the right eye for 4 days. Visual acuity and intraocular pressure were count fingers at 2&1/2M and 14 mm Hg in the right and 20/20 and 16 mm Hg in the left eye, respectively. Funduscopic exam and optical coherence tomography (OCT) of the right eye confirmed the diagnosis of concurrent cilioretinal artery occlusion and central retinal vein occlusion with segmental macular pallor in the territory of the cilioretinal artery, corresponding marked inner retina thickening on OCT and signs of vein occlusion. The patient received an intravitreal injection of bevacizumab and at 1-month follow-up, vision improved to 20/30 with corresponding anatomical improvement. It is very important to recognize combined central retinal vein occlusion and cilioretinal artery occlusion as they could be treated with intravitreal injections of anti-vascular endothelial growth factors with favorable treatment outcomes.

16.
Health Serv Res ; 57(2): 294-299, 2022 04.
Article in English | MEDLINE | ID: mdl-34636421

ABSTRACT

OBJECTIVE: To estimate the impact of Medicaid expansion on emergency department (ED) wait times. DATA SOURCES: We used 2012-2017 hospital-level secondary data from the CMS Hospital Compare data warehouse. STUDY DESIGN: We used a state-level difference-in-differences approach to identify the impact of Medicaid expansion on four measures of ED wait times: time before being seen by a provider; time before being sent home after being seen by a provider; boarding time spent in the ED waiting to be discharged to an inpatient room; and the percentage of patients who left without being seen. We compared outcomes in states that expanded Medicaid with those in states that did not expand Medicaid. DATA COLLECTION/EXTRACTION METHODS: Our sample included all US acute care hospitals with EDs in states that did not ever expand Medicaid or that fully expanded Medicaid in January of 2014. PRINCIPAL FINDINGS: Medicaid expansion was associated with a 3.1-min increase (SE: 0.994, baseline mean: 30.8 min) in the time spent waiting to see an ED provider, a relative increase of 10%. Patients who were eventually sent home after being seen by a provider experienced a 7.5-min increase (SE: 1.8, baseline mean 142.1 min) in wait time. Boarding time rose by 3.8 min (SE 1.9, baseline mean 111.4 min). The percentage of patients who left without being seen rose by 0.3 percentage points (SE: 0.09, baseline mean 2.0), a relative increase of 15.3%. CONCLUSIONS: This study provides multistate evidence that Medicaid expansion increased ED wait times for patients, indicating that ED crowding may have worsened post-expansion. Future work should aim to uncover the mechanisms through which insurance expansion increased ED wait times to provide policy direction.


Subject(s)
Medicaid , Patient Protection and Affordable Care Act , Emergency Service, Hospital , Hospitals , Humans , United States , Waiting Lists
17.
Metab Eng ; 69: 262-274, 2022 01.
Article in English | MEDLINE | ID: mdl-34883244

ABSTRACT

Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.


Subject(s)
Esters , Metabolic Engineering , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Esters/metabolism , Ethanol/metabolism
18.
mSystems ; 6(4): e0044321, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34342539

ABSTRACT

Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504 (or W29), which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing nonpreferred sugars (e.g., xylose) associated with biomass hydrolysates are poorly understood, making it difficult to control and engineer in Y. lipolytica. To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels, while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes, and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins involved in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, and ß-oxidation) activated by YB420 (lipid maintenance phenotype) or CBS7504 (lipid degradation phenotype) when xylose was the sole remaining carbon source. Overall, the results relate genetic diversity of undomesticated Y. lipolytica strains to complex phenotypes of superior growth, sugar utilization, lipid accumulation, and degradation in biomass hydrolysates. IMPORTANCE Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates. Our investigation into the genetic diversity of undomesticated Y. lipolytica strains, coupled with detailed strain characterization and proteomic analysis, revealed metabolic processes and regulatory elements conferring desirable phenotypes for growth, sugar utilization, and lipid accumulation in undetoxified biomass hydrolysates by these natural variants. This study provides a better understanding of the robust metabolism of Y. lipolytica and suggests potential metabolic engineering strategies to enhance its performance.

19.
Metab Eng ; 67: 453-463, 2021 09.
Article in English | MEDLINE | ID: mdl-34339856

ABSTRACT

Microbial metabolism can be harnessed to produce a large library of useful chemicals from renewable resources such as plant biomass. However, it is laborious and expensive to create microbial biocatalysts to produce each new product. To tackle this challenge, we have recently developed modular cell (ModCell) design principles that enable rapid generation of production strains by assembling a modular (chassis) cell with exchangeable production modules to achieve overproduction of target molecules. Previous computational ModCell design methods are limited to analyze small libraries of around 20 products. In this study, we developed a new computational method, named ModCell-HPC, that can design modular cells for large libraries with hundreds of products with a highly-parallel and multi-objective evolutionary algorithm and enable us to elucidate modular design properties. We demonstrated ModCell-HPC to design Escherichia coli modular cells towards a library of 161 endogenous production modules. From these simulations, we identified E. coli modular cells with few genetic manipulations that can produce dozens of molecules in a growth-coupled manner with different types of fermentable sugars. These designs revealed key genetic manipulations at the chassis and module levels to accomplish versatile modular cells, involving not only in the removal of major by-products but also modification of branch points in the central metabolism. We further found that the effect of various sugar degradation on redox metabolism results in lower compatibility between a modular cell and production modules for growth on pentoses than hexoses. To better characterize the degree of compatibility, we developed a method to calculate the minimal set cover, identifying that only three modular cells are all needed to couple with all compatible production modules. By determining the unknown compatibility contribution metric, we further elucidated the design features that allow an existing modular cell to be re-purposed towards production of new molecules. Overall, ModCell-HPC is a useful tool for understanding modularity of biological systems and guiding more efficient and generalizable design of modular cells that help reduce research and development cost in biocatalysis.


Subject(s)
Escherichia coli , Metabolic Engineering , Algorithms , Biocatalysis , Carbohydrate Metabolism , Escherichia coli/genetics
20.
Biotechnol Bioeng ; 118(12): 4655-4667, 2021 12.
Article in English | MEDLINE | ID: mdl-34436763

ABSTRACT

Alcohol acyltransferases (AATs) enables microbial biosynthesis of a large space of esters by condensing an alcohol and an acyl-CoA. However, substrate promiscuity of AATs prevents microbial biosynthesis of designer esters with high selectivity. Here, we developed a high-throughput microbial screening platform that facilitates rapid identification of AATs for designer ester biosynthesis. First, we established a microplate-based culturing technique with in situ fermentation and extraction of esters. We validated its capability in rapid profiling of the alcohol substrate specificity of 20 chloramphenicol acetyltransferase variants derived from Staphylococcus aureus (CATSa ) for microbial biosynthesis of acetate esters with various exogeneous alcohol supply. By coupling the microplate-based culturing technique with a previously established colorimetric assay, we developed a high-throughput microbial screening platform for AATs. We demonstrated that this platform could not only probe the alcohol substrate specificity of both native and engineered AATs but also identify the beneficial mutations in engineered AATs for enhanced ester synthesis. We anticipate the high-throughput microbial screening platform provides a useful tool to identify novel wildtype and engineered AATs that have important roles in nature and industrial biocatalysis for designer bioester production.


Subject(s)
Acyltransferases , High-Throughput Screening Assays/methods , Protein Engineering/methods , Proteins , Recombinant Proteins , Acyltransferases/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Colorimetry , Escherichia coli/genetics , Esters/metabolism , Fermentation , Molecular Docking Simulation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...