Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Microbiol ; 20(8): 2865-2879, 2018 08.
Article in English | MEDLINE | ID: mdl-29708635

ABSTRACT

A metatranscriptome study targeting the protistan community was conducted off the coast of Southern California, at the San Pedro Ocean Time-series station at the surface, 150 m (oxycline), and 890 m to link putative metabolic patterns to distinct protistan lineages. Comparison of relative transcript abundances revealed depth-related shifts in the nutritional modes of key taxonomic groups. Eukaryotic gene expression in the sunlit surface environment was dominated by phototrophs, such as diatoms and chlorophytes, and high abundances of transcripts associated with synthesis pathways (e.g., photosynthesis, carbon fixation, fatty acid synthesis). Sub-euphotic depths (150 and 890 m) exhibited strong contributions from dinoflagellates and ciliates, and were characterized by transcripts relating to digestion or intracellular nutrient recycling (e.g., breakdown of fatty acids and V-type ATPases). These transcriptional patterns underlie the distinct nutritional modes of ecologically important protistan lineages that drive marine food webs, and provide a framework to investigate trophic dynamics across diverse protistan communities.


Subject(s)
Ciliophora/physiology , Dinoflagellida/physiology , Food Chain , Seawater/microbiology , California , Gene Expression Regulation , Pacific Ocean
2.
Nat Microbiol ; 2: 17118, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28758990

ABSTRACT

The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N2) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N2-fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Nitrogen Fixation/genetics , Nitrogen/metabolism , Seawater/microbiology , Bacterial Proteins/genetics , Carbon/metabolism , Carbon Cycle , Cyanobacteria/metabolism , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...