Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 10: 1192043, 2023.
Article in English | MEDLINE | ID: mdl-38116382

ABSTRACT

Introduction: Biological Nitrification Inhibition (BNI) is defined as the plant-mediated control of soil nitrification via the release of nitrification inhibitors. BNI of Brachiaria humidicola (syn. Urochloa humidicola) has been mainly attributed to root-exuded fusicoccane-type diterpenes, e.g., 3-epi-brachialactone. We hypothesized, however, that BNI of B. humidicola is caused by an assemblage of bioactive secondary metabolites. Methods: B. humidicola root exudates were collected hydroponically, and metabolites were isolated by semi-preparative HPLC. Chemical structures were elucidated by HRMS as well as 1D and 2D NMR spectroscopy. Nitrification inhibiting potential of isolated metabolites was evaluated by a Nitrosomonas europaea based bioassay. Results and discussion: Besides previously described brachialactone isomers and derivatives, five phenol and cinnamic acid derivatives were identified in the root exudates of B. humidicola: 2-hydroxy-3-(hydroxymethyl)benzaldehyde, vanillin, umbelliferone and both trans- and cis-2,6-dimethoxycinnamic acid. Notably, vanillin revealed a substantially higher nitrification inhibiting activity than 3-epi-brachialactone (ED50 ∼ 12.5 µg·ml-1, ED80 ∼ 20 µg·ml-1), identifying this phenolic aldehyde as novel nitrification inhibitor (NI). Furthermore, vanillin exudation rates were in the same range as 3-epi-brachialactone (1-4 µg·h-1·g-1 root DM), suggesting a substantial contribution to the overall inhibitory activity of B. humidicola root exudates. In relation to the verification of the encountered effects within soils and considering the exclusion of any detrimental impact on the soil microbiome, the biosynthetic pathway of vanillin via the precursor phenylalanine and the intermediates p-coumaric acid/ferulic acid (precursors of further phenolic NI) might constitute a promising BNI breeding target. This applies not only to Brachiaria spp., but also to crops in general, owing to the highly conserved nature of these metabolites.

2.
Org Biomol Chem ; 21(39): 8003-8019, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37767762

ABSTRACT

A highly efficient copper(I)-catalyzed approach for the synthesis of 1,1'-bisindoles that is based on the formation of four bonds in one step has been developed. The unprecedented three component reaction between one molecule of a 1,2-bis(2-bromoaryl)hydrazine and two molecules of a 1,3-diketone employing 10 mol% CuI as a catalyst and Cs2CO3 as a base in DMSO at 100 °C for 24 h delivers substituted 1,1'-bisindoles with yields up to 92%. The new method proceeds as a double domino condensation/Ullmann type C-C coupling. It allows an efficient and practical access to substituted 1,1'-bisindoles in one step from easily available starting materials.

3.
Anal Bioanal Chem ; 415(25): 6333-6343, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37599331

ABSTRACT

Furan fatty acids (FuFAs) are valuable minor fatty acids, which are known for their excellent radical scavenging properties. Typically, the furan moiety is embedded in an otherwise saturated carboxyalkyl chain. Occasionally, these classic FuFAs are accompanied by low amounts of unsaturated furan fatty acids (uFuFAs), which additionally feature one double bond in conjugation with the furan moiety. A recent study produced evidence for the occurrence of two pairs of E-/Z-uFuFA isomers structurally related to saturated uFuFAs. Here, we present a strategy that allowed such trace compounds to be enriched to a level suited for structure determination by NMR. Given the low amounts and the varied abundance ratio of the four uFuFA isomers, the isolation of individual compounds was not pursued. Instead, the entire isomer mixture was enriched to an amount and purity suitable for structure investigation with contemporary NMR methods. Specifically, lipid extracted from 150 g latex, the richest known source of FuFAs, was subsequently fractionated by countercurrent chromatography (CCC), silver ion, and silica gel column chromatography. Analysis of the resulting mixture of four uFuFAs isomers (2.4 mg in an abundance ratio of 56:23:11:9) by different NMR techniques including PSYCHE verified that the structures of the two most abundant isomers were E-9-(3-methyl-5-pentylfuran-2-yl)non-8-enoic acid and E-9-(3-methyl-5-pent-1-enylfuran-2-yl)nonanoic acid. Additionally, we introduced a computer-based method to generate an averaged chromatogram from freely selectable GC/MS runs of CCC fractions without the necessity of pooling aliquots. This method was found to be suitable to simplify subsequent enrichment steps.

4.
J Org Chem ; 87(13): 8316-8341, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35732059

ABSTRACT

The Cu(I)-catalyzed reaction between five-, six-, seven-, and eight-membered cyclic 1-bromoallyl tosylates and five- and six-membered cyclic 1,3-dicarbonyls in DMF at 80 °C using Cs2CO3 as a base and 2-picolinic acid as an additive selectively delivers a wide array of bisannulated 4H-pyrans in a single step with yields up to 92%. The transformations are considered to proceed as intermolecular C-allylations/intramolecular O-vinylations. With six-membered cyclic 1-bromoallyl tosylates and acyclic ß-ketoesters as substrates, the corresponding 5,6,7,8-tetrahydro-4H-chromene-3-carboxylates are obtained with yields up to 59%.

5.
ACS Omega ; 6(38): 24553-24561, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604637

ABSTRACT

Cleistanthus collinus leaf extracts are consumed for suicidal purposes in southern India. The boiled decoction is known to be more toxic than the fresh leaf juice. Although several compounds have been isolated and their toxicity tested, controversy remains as to which compounds are responsible for the high level of toxicity of C. collinus. We report herein that cleistanthoside A is the major toxin in the boiled aqueous extract of fresh leaves and causes death in rats in small doses. The toxicity of the boiled extract prepared in the manner described can be attributed entirely to cleistanthoside A. Cleistanthin A could also be isolated from the boiled extract, albeit in trace amounts. As hypotension not responding to vasoconstrictors is the cause of death in patients who have consumed the boiled extract, effects of cleistanthoside A on the determinants of blood pressure, namely, force of cardiac contraction and vascular resistance, were tested in isolated organ experiments. Cleistanthoside A has a direct vasoconstrictor effect; however, it inhibits ventricular contractility. Therefore, the notion that the shock in C. collinus poisoning is of vascular origin must be considered carefully, and the possibility of cardiogenic shock must be studied. We present the crystal structure of cleistanthin A and show the potency of fast NMR methods (NOAH4-BSCN-NUS) in the full spectral assignment of cleistanthoside A as a real-world sample of a natural product. We also compare the results of the NOAH4-BSCN-NUS NMR experiments with conventional NMR methods.

6.
J Org Chem ; 86(2): 1408-1418, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33306383

ABSTRACT

A direct and operationally simple method for the regioselective synthesis of 2-aryl-substituted 2H-indazoles is reported. The Pd-catalyzed reaction between easily available 2-bromobenzyl bromides and arylhydrazines employing Cs2CO3 as the base and t-Bu3PHBF4 as the ligand in DMSO at 120 °C in a sealed tube delivers the 2-substituted-2H-indazoles in a single synthetic step with yields up to 79%. The new method is based on a regioselective intermolecular N-benzylation followed by intramolecular N-arylation and oxidation.

7.
J Agric Food Chem ; 68(35): 9576-9584, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786842

ABSTRACT

Essential oils are widely used in the food and cosmetics industry as natural flavoring and fragrance substances. For this reason, a thorough quality control applying selected analytical methods is required. Oxidation along with hydroperoxide formation is an important drawback during production and storage of essential oils. Hydroperoxides constitute the main products formed upon photo-oxidation of essential oils. Due to hydroperoxide instability, gas chromatography (GC) and high-performance liquid chromatography (HPLC) analyses are required. According to the European Pharmacopoeia, titration is the official method for oxidation assessment. However, this analysis is time-consuming, and large sample quantities are required. Here, we present a simple and accurate spectrophotometric method for the detection of peroxide trace amounts in essential oils and terpenes. The principle is based on the formation of Wurster's red, which is enforced by the peroxide-driven oxidation of N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD). The method was validated using dibenzoyl peroxide (DBP) and cumene hydroperoxide (CHP). To demonstrate the suitability of the method for routine analysis, various oxidized terpenes and essential oils were chosen. Moreover, photo- and thermal oxidation experiments were compared and evaluated using gas chromatography/mass spectrometry (GC/MS) and a synthesized limonene-2-hydroperoxide (Lim-2-OOH) reference standard to gather detailed information on the structural changes of the respective terpenes.


Subject(s)
Hydrogen Peroxide/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Spectrophotometry/methods , Terpenes/chemistry , Carum/chemistry , Oxidation-Reduction
8.
Chem Biodivers ; 17(10): e2000485, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32860459

ABSTRACT

Extracts of kidney vetch (Anthyllis vulneraria L.) are becoming increasingly interesting as ingredients for the health and cosmetics industry. However, comprehensive phytochemical investigations of this plant are scant in the literature. Thus, the aim of the present work was an in-depth characterization of semi-polar constituents from A. vulneraria. To capture a broad spectrum of compounds, the aerial parts of A. vulneraria were extracted with EtOH/water and the resulting crude extracts fractionated by partition between AcOEt and BuOH. Secondary plant metabolites were analyzed by HPLC-ESI-MSn and GC/MS. In a fraction obtained from the BuOH extract via Amberlite® XAD-7 purification glycosides of kaempferol, quercetin, isorhamnetin and rhamnocitrin were detected by LC/MSn , besides flavonoids acylated with meglutol (3-hydroxy-3-methylglutaric acid), acetic and ferulic acids. Moreover, aglycons were analyzed in extracts after 1 N HCl hydrolysis and derivatization with BSTFA. GC/MS analysis of the hydrolysates revealed the incidence of compounds like meglutol, OH/OMe-substituted benzoic acids, ferulic and fatty acids, flavonoids, sugars and the triterpenoid medicagenic acid. Furthermore, a hemolytic activity was detected in the AcOEt extract using a blood-agar assay, and this was ascribed to the occurrence of saponins. In a saponin fraction, obtained from the AcOEt extract by chromatographic purification, two main saponins were characterized by LC/MSn and HR-ESI-MSn . A pure sapogenin could be isolated via VLC and CC purification upon acid hydrolysis of the saponins and assigned to saikogenin D by NMR analysis.


Subject(s)
Fabaceae/chemistry , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Herbal Medicine , Molecular Structure , Phytochemicals/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization
9.
Plant Physiol Biochem ; 154: 491-497, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32663650

ABSTRACT

Biological Nitrification Inhibition (BNI) of Brachiaria humidicola has been mainly attributed to the root-exuded fusicoccane-type diterpene brachialactone. We hypothesized, however, that according to the high diversity of fusicoccanes described for plants and microorganisms, BNI of B. humidicola is caused by an assemblage of bioactive fusicoccanes. B. humidicola root exudates were collected hydroponically and compounds isolated by semi-preparative HPLC. Chemical structures were revealed by spectroscopic techniques, including HRMS as well as 1D and 2D NMR. Nitrification inhibiting (NI) potential of isolated compounds was evaluated by a Nitrosomonas europaea based bioassay. Besides the previously described brachialactone (1), root exudates contained 3-epi-brachialactone (2), the C3-epimer of 1 (m/z 334), as well as 16-hydroxy-3-epi-brachialactone (3) with an additional hydroxyl group at C16 (m/z 350) and 3,18-epoxy-9-hydroxy-4,7-seco-brachialactone (4), which is a ring opened brachialactone derivative with a 3,18 epoxide ring and a hydroxyl group at C9 (m/z 332). The 3-epi-brachialactone (2) showed highest NI activity (ED50 ~ 20 µg mL-1, ED80 ~ 40 µg mL-1), followed by compound 4 with intermediate (ED50 ~ 40 µg mL-1), brachialactone (1) with low and compound 3 without activity. In coherence with previous reports on fusicoccanes, stereochemistry at C3 was of high relevance for the biological activity (NI potential) of brachialactones.


Subject(s)
Brachiaria/chemistry , Lactones/chemistry , Nitrification , Plant Exudates/chemistry , Nitrosomonas europaea , Plant Roots
10.
Phytochemistry ; 177: 112430, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32516579

ABSTRACT

Despite intensive research in recent years, the biosynthetic route to costunolide in sunflower so far remained obscured. Additional P450 sequences from public sunflower transcriptomic database were screened to search for candidate enzymes which are able to introduce the 6α-hydroxy-group required for the esterification with the carboxy group of germacarane A acid, the final step in costunolide formation. CYP71BL9, a new P450 enzyme from sunflower was shown to catalyze this hydroxylation, hence being identified as HaCOS. Phylogentically, HaCOS is closer related to HaG8H than to any other known costunolide synthase in Asteraceae.The enzyme was successfully employed to reconstruct the sunflower biosynthesis of costunolide in transformed tobacco. Contrary, in yeast, only minor amounts of sesquiterpene lactone was produced, while 5-hydroxyfarnesylic acid was formed instead. HaCOS in combination with HaG8H produced 8ß-hydroxycostunolide (eupatolide) in transformed plants, thus indicating that sunflower possesses two independent modes of eupatolide synthesis via HaCOS and via HaES. The lack of HaCOS expression and of costunolide in trichomes suggests that the enzyme triggers the costunolied synthesis of the inner tissues of sunflower and might be linked to growth regulation processes.


Subject(s)
Helianthus , Sesquiterpenes , Lactones , Trichomes
11.
Food Chem ; 305: 125481, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31525592

ABSTRACT

Prebiotics are rising in interest in commercial scale productions due to increasing health awareness of consumers. Under bio-economic aspects, sweet and acid whey provide a suitable feed medium for the enzymatic generation of prebiotic lactulose. Since whey has a broad variation in composition, the influence of the feed composition on the concentration of generated lactulose was investigated. The influence of lactose and fructose concentration as well as enzymatic activity of two commercially available ß-galactosidases were investigated. The results were evaluated via response surface analysis with a quadratic model containing pairwise interaction terms. The optimal feed composition yielding a theoretical maximal amount of lactulose was determined as 1.28 or 0.74 mol/kg fructose and 0.17 or 0.19 mol/kg lactose with an enzymatic activity of 2.0 or 2.8 µkat/kg for acid (pH 4.4) or sweet (pH 6.6) whey. Furthermore, the major reaction product was isolated and subsequently, the structural identity was elucidated and verified via extensive NMR analysis.


Subject(s)
Lactulose/metabolism , Whey/metabolism , beta-Galactosidase/metabolism , Fructose/metabolism , Hydrogen-Ion Concentration , Isomerism , Lactose/metabolism , Lactulose/isolation & purification , Magnetic Resonance Spectroscopy , Whey/chemistry
12.
Sci Rep ; 9(1): 14295, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586110

ABSTRACT

Sesquiterpene lactones (STL) are a subclass of isoprenoids with many known bioactivities frequently found in the Asteraceae family. In recent years, remarkable progress has been made regarding the biochemistry of STL, and today the biosynthetic pathway of the core backbones of many STLs has been elucidated. Consequently, the focus has shifted to the discovery of the decorating enzymes that can modify the core skeleton with functional hydroxy groups. Using in vivo pathway reconstruction assays in heterologous organisms such as Saccharomyces cerevisiae and Nicotiana benthamiana, we have analyzed several cytochrome P450 enzyme genes of the CYP71AX subfamily from Helianthus annuus clustered in close proximity to one another on the sunflower genome. We show that one member of this subfamily, CYP71AX36, can catalyze the conversion of costunolide to 14-hydroxycostunolide. The catalytic activity of CYP71AX36 may be of use for the chemoenzymatic production of antileukemic 14-hydroxycostunolide derivatives and other STLs of pharmaceutical interest. We also describe the full 2D-NMR assignment of 14-hydroxycostunolide and provide all 13C chemical shifts of the carbon skeleton for the first time.


Subject(s)
Antineoplastic Agents, Phytogenic/biosynthesis , Cytochrome P-450 Enzyme System/metabolism , Helianthus/enzymology , Plant Proteins/metabolism , Sesquiterpenes/metabolism
14.
RSC Adv ; 9(34): 19549-19559, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519358

ABSTRACT

The laccase-catalyzed iodination of p-hydroxyarylcarbonyl- and p-hydroxyarylcarboxylic acid derivatives using KI as iodine source and aerial oxygen as the oxidant delivers the corresponding iodophenols in a highly efficient and sustainable manner with yields up to 93% on a preparative scale under mild reaction conditions.

15.
Chem Biodivers ; 15(5): e1800035, 2018 May.
Article in English | MEDLINE | ID: mdl-29575712

ABSTRACT

Seeds from Hypericum species have recently been identified as an interesting source of xanthone derivatives. Extraction of seeds from H. perforatum with MeOH and subsequent concentration via polyamide adsorption yielded a fraction enriched in tetrahydroxyxanthones (THX), which were further semipurified by silica gel chromatography. Based on tentative structure assignment of the two main THX X1 and X2 by NMR a total synthesis was performed for both compounds (THX 1 and 2, respectively), starting with an Ullmann ether synthesis. The synthesized 1 and 2 were characterized via 1D- and 2D-NMR methods as well as by LC/HR-MS analysis and proven to be 1,4,6,7-THX (1) and 1,2,6,7-THX (2). Final structure assignment of the natural Hypericum THX constituents was accomplished by comparing chromatographic and spectroscopic data (LC/MSn and GC/MS) with those of 1 and 2 which were obtained by synthesis. Beyond, investigations into the seeds of H. perforatum and H. tetrapterum by scanning electron microscopy (SEM) provided insights of the structure of the testa (seed coat), which is established by two cell layers, with the lignified sclerenchyma presumably being the depository of the xanthones.


Subject(s)
Hypericum/chemistry , Xanthones/chemistry , Molecular Structure , Plant Extracts/chemistry , Seeds/chemistry , Xanthones/chemical synthesis , Xanthones/isolation & purification
16.
Front Microbiol ; 8: 1605, 2017.
Article in English | MEDLINE | ID: mdl-28883813

ABSTRACT

The structure and function of the microbiome inhabiting the rumen are, amongst other factors, mainly shaped by the animal's feed intake. Describing the influence of different diets on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (bacteria and archaea) is of great interest for animal nutrition, biotechnology, and climatology. Samples were obtained from three fistulated Jersey cows rotationally fed with corn silage, grass silage or grass hay, each supplemented with a concentrate mixture. Samples were fractionated into ruminal fluid, particle-associated rumen liquid, and solid matter. DNA, proteins and metabolites were analyzed subsequently. DNA extracts were used for Illumina sequencing of the 16S rRNA gene and the metabolomes of rumen fluids were determined by 500 MHz-NMR spectroscopy. Tryptic peptides derived from protein extracts were measured by LC-ESI-MS/MS and spectra were processed by a two-step database search for quantitative metaproteome characterization. Data are available via ProteomeXchange with the identifier PXD006070. Protein- and DNA-based datasets revealed significant differences between sample fractions and diets and affirmed similar trends concerning shifts in phylogenetic composition. Ribosomal genes and proteins belonging to the phylum of Proteobacteria, particularly Succinivibrionaceae, exhibited a higher abundance in corn silage-based samples while fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid phase fractions. The analysis of 8163 quantified bacterial proteins revealed the presence of 166 carbohydrate active enzymes in varying abundance. Cellulosome affiliated proteins were less expressed in the grass silage, glycoside hydrolases appeared in slightest numbers in the corn silage. Most expressed glycoside hydrolases belonged to families 57 and 2. Enzymes analogous to ABC transporters for amino acids and monosaccharides were more abundant in the corn silage whereas oligosaccharide transporters showed a higher abundance in the fiber-rich diets. Proteins involved in carbon metabolism were detected in high numbers and identification of metabolites like short-chain fatty acids, methylamines and phenylpropionate by NMR enabled linkage between producers and products. This study forms a solid basis to retrieve deeper insight into the complex network of microbial adaptation in the rumen.

17.
Chem Biodivers ; 14(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-28134470

ABSTRACT

Mercurialis tomentosa L. has been used in Spanish ethnomedicine. In the present study the first phytochemical characterisation of a lipid fraction from M. tomentosa was performed. The CHCl3 extraction of aerial parts from M. tomentosa and GC/MS investigations revealed the occurrence of cuticular lipid and wax constituents, like long chain n-alcohols and n-aldehydes (C22  - C30 ), besides several aromatic constituents, i.e., phenylpropanoids and n-alkylresorcinols. The latter were further purified by CC and analysed by LC/MSn . In contrast to other Mercurialis species, i.e., M. annua, M. perennis, which exclusively contain 5-n-alkylresorcinols (1a - j, Cn ), mainly 5-n-alkyl-2-methylresorcinols (2a - j, Cn *) with side chain lengths of C15  - C25 were found in M. tomentosa, in addition to 1a - j. Thus, the latter compounds may be utilised for analytical characterisation and authentication of M. tomentosa based on fingerprinting methods. For structure elucidation a novel facile total synthesis of one representative 5-n-alkyl-2-methylresorcinol homologue (2d, C19 *) was developed, starting with a Grignard reaction from a substituted benzoic acid chloride (19). The compound obtained by synthesis was identical to the natural product 2d in terms of its chromatographic and spectroscopic features. Futhermore, 2d exhibited satisfactory DPPH free radical scavenging activity (IC50  = 37.8 µm) when compared to trolox (IC50  = 21.0 µm), corroborating the antioxidant features of these amphipathic molecules.


Subject(s)
Antioxidants/pharmacology , Euphorbiaceae/chemistry , Lipids/analysis , Plant Extracts/analysis , Resorcinols/analysis , Gas Chromatography-Mass Spectrometry , Lipids/chemistry , Plant Extracts/chemistry , Resorcinols/chemistry , Spain
18.
Chem Biodivers ; 13(5): 602-12, 2016 May.
Article in English | MEDLINE | ID: mdl-27039891

ABSTRACT

Five homologous acetylated acylglycerols of 3-hydroxyfatty acids (chain lengths C(14) - C(18)), named euphrasianins A - E, were characterized for the first time in Euphrasia rostkoviana Hayne (Orobanchaceae) by gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (HPLC/APCI-MS(n) ). In addition to mass spectrometric data, structures of euphrasianins were verified via a three-step total synthesis of one representative homologue (euphrasianin A). The structure of the latter was confirmed by 1D- and 2D-NMR experiments as well as high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS). The absolute configuration of the 3-hydroxyfatty acid moiety at C(3) was found to be R in the natural euphrasianins, which was determined by alkaline hydrolysis and methylation of a purified fraction, followed by chiral GC analysis. Furthermore, in extracts of Euphrasia tetraquetra (Bréb.) Arrond. euphrasianins C and E were detected exclusively, indicating that this subclass of lipid constituents is possibly valuable for fingerprinting methods.


Subject(s)
Euphrasia/chemistry , Glycerol/analogs & derivatives , Glycerol/isolation & purification , Lipids/isolation & purification , Orobanchaceae/chemistry , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Glycerol/chemistry , Lipids/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization
19.
Phytochemistry ; 124: 29-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26880289

ABSTRACT

Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a ß-farnesene synthase.


Subject(s)
Alkyl and Aryl Transferases/isolation & purification , Helianthus/enzymology , Trichomes/metabolism , Alkyl and Aryl Transferases/metabolism , Helianthus/chemistry , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
20.
Food Chem ; 200: 274-82, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26830589

ABSTRACT

Pigment profiles of yellow-, orange-, and red-peeled cashew (Anacardium occidentale L.) apples were investigated. Among 15 identified carotenoids and carotenoid esters, ß-carotene, and ß-cryptoxanthin palmitate were the most abundant in peels and pulp of all samples. Total carotenoid concentrations in the pulp of yellow- and red-peeled cashew apples were low (0.69-0.73 mg/100g FW) compared to that of orange-peeled samples (2.2mg/100g FW). The color difference between the equally carotenoid-rich yellow and red colored samples indicated the presence of a further non-carotenoid pigment type in red peels. Among four detected anthocyanins, the major anthocyanin was unambiguously identified as 7-O-methylcyanidin 3-O-ß-D-galactopyranoside by NMR spectroscopy. Red and yellow peel color was chiefly determined by the presence and absence of anthocyanins, respectively, while the orange appearance of the peel was mainly caused by increased carotenoid concentrations. Thus, orange-peeled fruits represent a rich source of provitamin A (ca. 124 µg retinol-activity-equivalents/100g pulp, FW).


Subject(s)
Anacardium/chemistry , Anthocyanins/analysis , Carotenoids/analysis , Fruit/chemistry , Esters/analysis , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...