Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(45): 18724-18731, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37917811

ABSTRACT

Uranium trichloride (UCl3) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl3, at both ambient condition and in situ high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes (vi) of UCl3 exhibit a negative temperature derivative ((∂νi/∂T)P) with increasing temperature. This red-shift behavior is likely due to the elongation of U-Cl bonds. The average isobaric mode Grüneisen parameter (γiP = 0.91 ± 0.02) of UCl3 was determined through use of the coefficient of thermal expansion published in Vogel et al. (2021) and the (∂νi/∂T)P values determined in this study. These results are in general agreement with those calculated here by density functional theory (DFT+U). Finally, a comparison of the ambient band positions of UCl3 to those of isostructural lanthanide (La-Eu) and actinide chlorides (Am-Cf) has been made.

2.
Sci Data ; 10(1): 822, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001085

ABSTRACT

Transferable and mechanistic understanding of cross-scale interactions is necessary to predict how coastal systems respond to global change. Cohesive datasets across geographically distributed sites can be used to examine how transferable a mechanistic understanding of coastal ecosystem control points is. To address the above research objectives, data were collected by the EXploration of Coastal Hydrobiogeochemistry Across a Network of Gradients and Experiments (EXCHANGE) Consortium - a regionally distributed network of researchers that collaborated on experimental design, methodology, collection, analysis, and publication. The EXCHANGE Consortium collected samples from 52 coastal terrestrial-aquatic interfaces (TAIs) during Fall of 2021. At each TAI, samples collected include soils from across a transverse elevation gradient (i.e., coastal upland forest, transitional forest, and wetland soils), surface waters, and nearshore sediments across research sites in the Great Lakes and Mid-Atlantic regions (Chesapeake and Delaware Bays) of the continental USA. The first campaign measures surface water quality parameters, bulk geochemical parameters on water, soil, and sediment samples, and physicochemical parameters of sediment and soil.

3.
Environ Toxicol Chem ; 42(6): 1199-1211, 2023 06.
Article in English | MEDLINE | ID: mdl-36942360

ABSTRACT

Commercially available headspace solid-phase microextraction (HS-SPME) fibers have been used for years to extract pesticides and polychlorinated biphenyls from aqueous samples at the expected ultratrace levels (picograms per liter or parts per quadrillion) in alpine lakes. Several variables of the HS-SPME technique have been adequately evaluated, including water temperature, pH, salt content, fiber type and coating thickness, length of fiber-sample exposure, and liquid immersion versus headspace exposure; but surprisingly, analyte recovery as a function of analyte concentration and storage time has not been included in previous studies, which can be important for remote sampling sites. Seven hydrophobic chlorinated pollutants were identified in alpine lake water (out of 54 analyzed); but recovery using the common SPME technique was found to be inconsistent as the analyte concentration decreases, and the recovery trend as a function of concentration varies on a compound-to-compound basis that could result in a large underestimation of analyte concentrations in field samples. Of the 54 compounds surveyed, o,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-DDT, p,p'-dichlorodiphenyldichloroethylene (DDE), o,p'-DDE, chlorthal-dimethyl, endosulfan I, γ-hexachlorocyclohexane, heptachlor, and trans-nonachlor were generally measured at concentrations between 1 and 150 pg/L (parts per quadrillion). No study to date has evaluated this commonly used but unstandardized technique for analyte recovery as a function of analyte concentration or storage time of aqueous samples. Environ Toxicol Chem 2023;42:1199-1211. © 2023 SETAC.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , DDT/analysis , Environmental Pollutants/analysis , Lakes , Solid Phase Microextraction , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Water
4.
Environ Sci Technol ; 51(1): 699-708, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27935282

ABSTRACT

The effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mgC·L-1 and 50 mgC·L-1 natural organic matter (NOM), 10-9-10-10 M 238Pu, and 0.1 g·L-1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increased Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. The results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.


Subject(s)
Humic Substances , Plutonium/chemistry , Adsorption , Carbon , Deferoxamine , Hydrogen-Ion Concentration
5.
Anal Chem ; 88(8): 4196-9, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26976236

ABSTRACT

Preparation of relatively pure low concentration Pu(V) solutions for environmental studies is nontrivial due to the complex redox chemistry of Pu. Ozone gas generated by an inexpensive unit designed for household-use was used to oxidize a 2 × 10(-8) M Pu(IV) solution to predominantly Pu(VI) with some Pu(V) present. Over several days, the Pu(VI) in the solution reduced to Pu(V) without further reducing to Pu(IV). The reduction from Pu(VI) to Pu(V) could be accelerated by raising the pH of the solution, which led to an immediate conversion without substantial conversion to Pu(IV). The aqueous Pu was found to be stable as predominately Pu(V) for greater than one month from pH 3-7; however, at circumneutral pH, a sizable fraction of Pu was lost from solution by either precipitation or sorption to the vial walls. This method provides a fast means of preparing Pu(V) solutions for tracer concentration studies without numerous extraction or cleanup steps.


Subject(s)
Chemical Fractionation/methods , Plutonium/isolation & purification , Hydrogen-Ion Concentration , Oxidation-Reduction , Ozone/chemistry , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...