Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Cancers (Basel) ; 13(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34572907

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). The microRNA expression profile of BPDCN was compared to that of normal pDCs and the impact of miRNA dysregulation on the BPDCN transcriptional program was assessed. MiRNA and gene expression profiling data were integrated to obtain the BPDCN miRNA-regulatory network. The biological process mainly dysregulated by this network was predicted to be neurogenesis, a phenomenon raising growing interest in solid tumors. Neurogenesis was explored in BPDCN by querying different molecular sources (RNA sequencing, Chromatin immunoprecipitation-sequencing, and immunohistochemistry). It was shown that BPDCN cells upregulated neural mitogen genes possibly critical for tumor dissemination, expressed neuronal progenitor markers involved in cell migration, exchanged acetylcholine neurotransmitter, and overexpressed multiple neural receptors that may stimulate tumor proliferation, migration and cross-talk with the nervous system. Most neural genes upregulated in BPDCN are currently investigated as therapeutic targets.

4.
Oncotarget ; 7(1): 224-40, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26325594

ABSTRACT

Burkitt lymphoma (BL) is an aggressive neoplasm characterized by consistent morphology and phenotype, typical clinical behavior and distinctive molecular profile. The latter is mostly driven by the MYC over-expression associated with the characteristic translocation (8;14) (q24; q32) or with variant lesions. Additional genetic events can contribute to Burkitt Lymphoma pathobiology and retain clinical significance. A pathogenetic role for Epstein-Barr virus infection in Burkitt lymphomagenesis has been suggested; however, the exact function of the virus is largely unknown.In this study, we investigated the molecular profiles (genes and microRNAs) of Epstein-Barr virus-positive and -negative BL, to identify specific patterns relying on the differential expression and role of Epstein-Barr virus-encoded microRNAs.First, we found significant differences in the expression of viral microRNAs and in selected target genes. Among others, we identified LIN28B, CGNL1, GCET2, MRAS, PLCD4, SEL1L, SXX1, and the tyrosine kinases encoding STK10/STK33, all provided with potential pathogenetic significance. GCET2, also validated by immunohistochemistry, appeared to be a useful marker for distinguishing EBV-positive and EBV-negative cases. Further, we provided solid evidences that the EBV-encoded microRNAs (e.g. BART6) significantly mold the transcriptional landscape of Burkitt Lymphoma clones.In conclusion, our data indicated significant differences in the transcriptional profiles of EBV-positive and EBV-negative BL and highlight the role of virus encoded miRNA.


Subject(s)
Burkitt Lymphoma/genetics , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , MicroRNAs/genetics , RNA, Viral/genetics , Burkitt Lymphoma/virology , Cluster Analysis , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Epstein-Barr Virus Infections/virology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins , Microfilament Proteins , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Phospholipase C delta/genetics , Phospholipase C delta/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , ras Proteins/genetics , ras Proteins/metabolism
5.
Oncotarget ; 6(31): 31134-50, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26429859

ABSTRACT

Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9-5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Resistance, Neoplasm/drug effects , Hyaluronan Receptors/metabolism , Multiple Myeloma/drug therapy , Phenylbutyrates/pharmacology , Thalidomide/analogs & derivatives , Animals , Apoptosis , Blotting, Western , Cell Proliferation , Drug Therapy, Combination , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Gene Expression Profiling , Histone Deacetylase Inhibitors/pharmacology , Humans , Hyaluronan Receptors/genetics , Immunoenzyme Techniques , Lenalidomide , Mice , Mice, Nude , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thalidomide/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Proc Natl Acad Sci U S A ; 112(30): 9418-23, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26170308

ABSTRACT

Nucleolin (NCL) is a nucleocytoplasmic protein involved in many biological processes, such as ribosomal assembly, rRNA processing, and mRNA stabilization. NCL also regulates the biogenesis of specific microRNAs (miRNAs) involved in tumor development and aggressiveness. Interestingly, NCL is expressed on the surface of actively proliferating cancer cells, but not on their normal counterparts. Therefore, NCL is an attractive target for antineoplastic treatments. Taking advantage of phage-display technology, we engineered a fully human single-chain fragment variable, named 4LB5. This immunoagent binds NCL on the cell surface, it is translocated into the cytoplasm of target cells, and it abrogates the biogenesis of NCL-dependent miRNAs. Binding of 4LB5 to NCL on the cell surface of a variety of breast cancer and hepatocellular carcinoma cell lines, but not to normal-like MCF-10a breast cells, dramatically reduces cancer cell viability and proliferation. Finally, in orthotopic breast cancer mouse models, 4LB5 administration results in a significant reduction of the tumor volume without evident side effects. In summary, here we describe, to our knowledge, the first anti-NCL single-chain fragment variable displaying antineoplastic activity against established solid tumors, which could represent the prototype of novel immune-based NCL-targeting drugs with clinical potential as diagnostic and therapeutic tools in a wide variety of human cancers.


Subject(s)
Antineoplastic Agents/chemistry , Neoplasms/immunology , Neoplasms/therapy , Phosphoproteins/chemistry , RNA-Binding Proteins/chemistry , Single-Chain Antibodies/chemistry , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Cell Proliferation , Cell Survival , Cytoplasm/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Liver Neoplasms/metabolism , Mice , Mice, SCID , Neoplasm Transplantation , Neoplasms/metabolism , Peptide Library , Protein Engineering , Recombinant Proteins/chemistry , Nucleolin
7.
J Exp Med ; 210(5): 951-68, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23610125

ABSTRACT

Numerous studies have described the altered expression and the causal role of microRNAs (miRNAs) in human cancer. However, to date, efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here we find that nucleolin (NCL), a major nucleolar protein, posttranscriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, that are causally involved in breast cancer initiation, progression, and drug resistance. We also show that NCL is commonly overexpressed in human breast tumors and that its expression correlates with that of NCL-dependent miRNAs. Finally, inhibition of NCL using guanosine-rich aptamers reduces the levels of NCL-dependent miRNAs and their target genes, thus reducing breast cancer cell aggressiveness both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Aptamers, Nucleotide/pharmacology , Cell Line, Tumor , Cell Proliferation , Estradiol/analogs & derivatives , Estradiol/pharmacology , Female , Fulvestrant , Gene Knockdown Techniques , Gene Silencing , Genes, Neoplasm/genetics , Guanine , HEK293 Cells , Humans , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Oligodeoxyribonucleotides/pharmacology , Transcription, Genetic , Up-Regulation , Nucleolin
8.
Proc Natl Acad Sci U S A ; 108(12): 4840-5, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383185

ABSTRACT

hsa-mir-483 is located within intron 2 of the IGF2 gene. We have previously shown oncogenic features of miR-483-3p through cooperation with IGF2 or by independently targeting the proapoptotic gene BBC3/PUMA. Here we demonstrate that expression of miR-483 can be induced independently of IGF2 by the oncoprotein ß-catenin through an interaction with the basic helix-loop-helix protein upstream stimulatory transcription factor 1. We also show that ß-catenin itself is a target of miR-483-3p, triggering a negative regulatory loop that becomes ineffective in cells harboring an activating mutation of ß-catenin. These results provide insights into the complex regulation of the IGF2/miR-483 locus, revealing players in the ß-catenin pathway.


Subject(s)
MicroRNAs/metabolism , Mutation , beta Catenin/biosynthesis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Genetic Loci/genetics , HEK293 Cells , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Introns/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta Catenin/genetics
9.
Cancer Res ; 70(8): 3140-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20388800

ABSTRACT

hsa-mir-483 is located within intron 2 of the IGF2 locus. We found that the mature microRNA (miRNA) miR-483-3p is overexpressed in 100% of Wilms' tumors. In addition, colon, breast, and liver cancers exhibit high or even extremely high levels of miR-483-3p in approximately 30% of the cases. A coregulation with IGF2 mRNA was detected, although some tumors exhibited high expression of miR-483-3p without a concomitant increase of IGF2. These findings suggested that miR-483-3p could cooperate with IGF2 or act as an autonomous oncogene. Indeed, here we prove that an anti-miRNA oligonucleotide against miR-483-3p could inhibit the miRNAs without affecting IGF2 mRNA and it could suppress tumorigenicity of HepG2 cells, a cell line that overexpresses miR-483-3p and IGF2. Conversely, no antitumor effect was elicited by inhibition of IGF2. The oncogenic mechanism of miR-483-3p was at least partially clarified by the finding that it could modulate the proapoptotic protein BBC3/PUMA and miR-483-3p enforced expression could protect cells from apoptosis. Our results indicate that miR-483-3p could function as an antiapoptotic oncogene in various human cancers and reveal a new, potentially important target for anticancer therapy.


Subject(s)
Apoptosis , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , MicroRNAs/metabolism , Animals , Cell Line, Tumor , Hep G2 Cells , Humans , Introns , Mice , Mice, SCID , Oligonucleotides/chemistry , Oncogenes , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Wilms Tumor/genetics , Wilms Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...