Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Phys Med ; 88: 98-103, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34217003

ABSTRACT

PURPOSE: The influence of basic plan parameters such as slice thickness, grid resolution, algorithm type and field size on calculated small field output factors (OFs) was evaluated in a multicentric study. METHODS AND MATERIALS: Three computational homogeneous water phantoms with slice thicknesses (ST) 1, 2 and 3 mm were shared among twenty-one centers to calculate OFs for 1x1, 2x2 and 3x3 cm2 field sizes (FSs) (normalized to 10x10 cm2 FS), with their own treatment planning system (TPS) and the energy clinically used for stereotactic body radiation therapy delivery. OFs were calculated for each combination of grid resolution (GR) (1, 2 and 3 mm) and ST and finally compared with the OFs measured for the TPS commissioning. A multivariate analysis was performed to test the effect of basic plan parameters on calculated OFs. RESULTS: A total of 509 data points were collected. Calculated OFs are slightly higher than measured ones. The multivariate analysis showed that Center, GR, algorithm type, and FS are predictive variables of the difference between calculated and measured OFs (p < 0.001). As FS decreases, the spread in the difference between calculated and measured OFs became larger when increasing the GR. Monte Carlo and Analytical Anisotropic Algorithms, presented a dependence on GR (p < 0.01), while Collapsed Cone Convolution and Acuros did not. The effect of the ST was found to be negligible. CONCLUSIONS: Modern TPSs slightly overestimate the calculated small field OFs compared with measured ones. Grid resolution, algorithm, center number and field size influence the calculation of small field OFs.


Subject(s)
Radiosurgery , Radiotherapy Planning, Computer-Assisted , Algorithms , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage
2.
Breast Cancer Res ; 23(1): 46, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33849606

ABSTRACT

BACKGROUND: Intraoperative radiotherapy with electrons (IOERT) boost could be not inferior to external beam radiotherapy (EBRT) boost in terms of local control and tissue tolerance. The aim of the study is to present the long-term follow-up results on local control, esthetic evaluation, and toxicity of a prospective study on early-stage breast cancer patients treated with breast-conserving surgery with an IOERT boost of 10 Gy (experimental group) versus 5 × 2 Gy EBRT boost (standard arm). Both arms received whole-breast irradiation (WBI) with 50 Gy (2 Gy single dose). METHODS: A single-institution phase III randomized study to compare IOERT versus EBRT boost in early-stage breast cancer was conducted as a non-inferiority trial. Primary endpoints were the evaluation of in-breast true recurrences (IBTR) and out-field local recurrences (LR) as well as toxicity and cosmetic results. Secondary endpoints were overall survival (OS), disease-free survival (DFS), and patient's grade of satisfaction with cosmetic outcomes. RESULTS: Between 1999 and 2004, 245 patients were randomized: 133 for IOERT and 112 for EBRT. The median follow-up was 12 years (range 10-16 years). The cumulative risk of IBTR at 5-10 years was 0.8% and 4.3% after IOERT, compared to 4.2% and 5.3% after EBRT boost (p = 0.709). The cumulative risk of out-field LR at 5-10 years was 4.7% and 7.9% for IOERT versus 5.2% and 10.3% for EBRT (p = 0.762). All of the IOERT arm recurrences were observed at > 100 months' follow-up, whereas the mean time to recurrence in the EBRT group was earlier (55.2 months) (p < 0.05). No late complications associated with IOERT were observed. The overall cosmetic results were scored as good or excellent in physician and patient evaluations for both IOERT and EBRT. There were significantly better scores for IOERT at all time points in physician and patient evaluations with the greatest difference at the end of EBRT (p = 0.006 objective and p = 0.0004 subjective) and most narrow difference at 12 months after the end of EBRT (p = 0.08 objective and p = 0.04 subjective analysis). CONCLUSION: A 10-Gy IOERT boost during breast-conserving surgery provides high local control rates without significant morbidity. Although not significantly superior to external beam boosts, the median time to local recurrences after IOERT is prolonged by more than 4 years.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Electrons/therapeutic use , Adult , Aged , Breast Neoplasms/pathology , Female , Follow-Up Studies , Humans , Intraoperative Period , Mastectomy, Segmental , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Prospective Studies , Radiotherapy Dosage , Radiotherapy, Adjuvant , Survival Analysis , Treatment Outcome
4.
Phys Med ; 80: 201-208, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190076

ABSTRACT

This study compares Treatment Planning System (TPS) out of field dose calculation on a pacemaker (PMK) during external beam radiotherapy treatment. We consider four TPSs (Elekta-Monaco, Oncentra- Masterplan and two Philips-Pinnacle3) commissioned for two linacs (Elekta Sinergy and Varian Clinac) delivering two test beams (a highly modulated one and a square field) and two clinical breast plans. To calculate and measure dose to a PMK we built a Real Water3 phantom with a PMK embedded in it. Measures are performed with thermo-luminescent dosimeters and Mosfet dosimeters. We evaluate differences between TPS calculated values for the dose to the PMK (both point dose and dose-volume histogram parameters) when the PMK is positioned in the first 10 cm outside the radiation fields. TPS calculation accuracy is evaluated comparing such values with measures. Differences in TPS calculations are on average 3.5 cGy Gy-1 for the modulated beam, and always lower than 2 cGy Gy-1 for the square beam. TPS dose calculation depends mostly on the TPS algorithm and model rather than the linac commissioned. TPSs considered show different degrees of calculation accuracy. In the first 4 cm to the field edge three out of four TPSs are in good agreement with measurements in the square beam, but only one keeps the agreement in the modulated beam: the others show over and underestimations up to +20% -40%. The same accuracy is found considering a homogeneous phantom. Our results confirm what reported in previous studies and highlight the impact of TPS commissioning.


Subject(s)
Pacemaker, Artificial , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Humans , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
5.
Phys Med ; 32(4): 600-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27061871

ABSTRACT

PURPOSE: A large-scale multi-institutional planning comparison on lung cancer SABR is presented with the aim of investigating possible criticism in carrying out retrospective multicentre data analysis from a dosimetric perspective. METHODS: Five CT series were sent to the participants. The dose prescription to PTV was 54Gy in 3 fractions of 18Gy. The plans were compared in terms of PTV-gEUD2 (generalized Equivalent Uniform Dose equivalent to 2Gy), mean dose to PTV, Homogeneity Index (PTV-HI), Conformity Index (PTV-CI) and Gradient Index (PTV-GI). We calculated the maximum dose for each OAR (organ at risk) considered as well as the MLD2 (mean lung dose equivalent to 2Gy). The data were stratified according to expertise and technology. RESULTS: Twenty-six centers equipped with Linacs, 3DCRT (4% - 1 center), static IMRT (8% - 2 centers), VMAT (76% - 20 centers), CyberKnife (4% - 1 center), and Tomotherapy (8% - 2 centers) collaborated. Significant PTV-gEUD2 differences were observed (range: 105-161Gy); mean-PTV dose, PTV-HI, PTV-CI, and PTV-GI were, respectively, 56.8±3.4Gy, 14.2±10.1%, 0.70±0.15, and 4.9±1.9. Significant correlations for PTV-gEUD2 versus PTV-HI, and MLD2 versus PTV-GI, were observed. CONCLUSIONS: The differences in terms of PTV-gEUD2 may suggest the inclusion of PTV-gEUD2 calculation for retrospective data inter-comparison.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Radiosurgery/instrumentation , Tomography, X-Ray Computed/methods
6.
Strahlenther Onkol ; 191(7): 573-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25747263

ABSTRACT

PURPOSE: The Italian Association of Medical Physics (AIFM) started a working group dedicated to stereotactic body radiotherapy (SBRT) treatment. In this work, we performed a multicenter planning study on patients who were candidates for SBRT in the treatment of prostate cancer with the aim of evaluating the dosimetric consistency among the different hospitals. METHODS AND MATERIALS: Fourteen centers were provided the contours of 5 patients. Plans were performed following the dose prescription and constraints for organs at risk (OARs) of a reference paper. The dose prescription was 35 Gy in five fractions for the planning target volume (PTV). Different techniques were used (3D-CRT, fixed-Field IMRT, VMAT, CyberKnife). Plans were compared in terms of dose-volume histogram (DVH) parameters. Furthermore, the median DVH was calculated and one patient was re-planned. RESULTS: A total of 70 plans were compared. The maximum dose to the body was 107.9 ± 4.5 % (range 101.5-116.3 %). Dose at 98 % (D98 %) and mean dose to the clinical target volume (CTV) were 102.0 ± 0.9 % (global range 101.1-102.9 %) and 105.1 ± 0.6 % (range 98.6-124.6 %). Similar trends were found for D95 % and mean dose to the PTV. Important differences were found in terms of the homogeneity index. Doses to OARs were heterogeneous. The subgroups with the same treatment planning system showed differences comparable to the differences of the whole group. In the re-optimized plans, DVH differences among institutes were reduced and OAR sparing improved. CONCLUSION: Important dosimetric differences with possible clinical implications, in particular related to OARs, were found. Replanning allowed a reduction in the OAR dose and decreased standard deviations. Multicenter clinical trials on SBRT should require a preplanning study to standardize the optimization procedure.


Subject(s)
Prostatic Neoplasms/surgery , Radiosurgery/methods , Aged , Feasibility Studies , Humans , Italy , Male , Middle Aged , Organs at Risk , Patient Care Planning , Patient Positioning , Preoperative Care , Radiometry/methods
7.
Int J Radiat Oncol Biol Phys ; 63(3): 952-60, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16199324

ABSTRACT

PURPOSE: To investigate the use of metal oxide silicon field effect transistors (MOSFETs) as in vivo dosimetry detectors during electron beams at high dose-per-pulse intraoperative radiotherapy. METHODS AND MATERIALS: The MOSFET system response in terms of reproducibility, energy, dose rate and temperature dependence, dose-linearity from 1 to 25 Gy, angular response, and dose perturbation was analyzed in the 6-9-MeV electron beam energy range produced by an intraoperative radiotherapy-dedicated mobile accelerator. We compared these with the 6- and 9-MeV electron beams produced by a conventional accelerator. MOSFETs were also used in clinical dosimetry. RESULTS: In experimental conditions, the overall uncertainty of the MOSFET response was within 3.5% (+/-SD). The investigated electron energies and the dose rate did not significantly influence the MOSFET calibration factors. The dose perturbation was negligible. In vivo dosimetry results were in accordance with the predicted values within +/-5%. A discordance occurred either for an incorrect position of the dosimeter on the patient or when a great difference existed between the clinical and calibration setup, particularly when performing exit dose measurements. CONCLUSION: Metal oxide silicon field effect transistors are suitable for in vivo dosimetry during intraoperative radiotherapy because their overall uncertainty is comparable to the accuracy required in target dose delivery.


Subject(s)
Breast Neoplasms/radiotherapy , Pancreatic Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Radiometry/instrumentation , Transistors, Electronic , Breast Neoplasms/surgery , Calibration , Equipment Design , Female , Humans , Pancreatic Neoplasms/surgery , Radiometry/methods , Radiotherapy Dosage , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...