Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37890229

ABSTRACT

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Subject(s)
Arabidopsis , Herbicides , Lyases , Arabidopsis/metabolism , Cysteine , Cysteine Synthase/metabolism , Herbicides/pharmacology , Plants/metabolism , Sulfhydryl Compounds/metabolism
2.
Toxicol Lett ; 383: 1-16, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37217012

ABSTRACT

Clomipramine, a tricyclic antidepressant used to treat depression and obsessive-compulsive disorder, has been linked to a few cases of acute hepatotoxicity. It is also recognized as a compound that hinders the functioning of mitochondria. Hence, the effects of clomipramine on mitochondria should endanger processes that are somewhat connected to energy metabolism in the liver. For this reason, the primary aim of this study was to examine how the effects of clomipramine on mitochondrial functions manifest in the intact liver. For this purpose, we used the isolated perfused rat liver, but also isolated hepatocytes and isolated mitochondria as experimental systems. According to the findings, clomipramine harmed metabolic processes and the cellular structure of the liver, especially the membrane structure. The considerable decrease in oxygen consumption in perfused livers strongly suggested that the mechanism of clomipramine toxicity involves the disruption of mitochondrial functions. Coherently, it could be observed that clomipramine inhibited both gluconeogenesis and ureagenesis, two processes that rely on ATP production within the mitochondria. Half-maximal inhibitory concentrations for gluconeogenesis and ureagenesis ranged from 36.87 µM to 59.64 µM. The levels of ATP as well as the ATP/ADP and ATP/AMP ratios were reduced, but distinctly, between the livers of fasted and fed rats. The results obtained from experiments conducted on isolated hepatocytes and isolated mitochondria unambiguously confirmed previous propositions about the effects of clomipramine on mitochondrial functions. These findings revealed at least three distinct mechanisms of action, including uncoupling of oxidative phosphorylation, inhibition of the FoF1-ATP synthase complex, and inhibition of mitochondrial electron flow. The elevation in activity of cytosolic and mitochondrial enzymes detected in the effluent perfusate from perfused livers, coupled with the increase in aminotransferase release and trypan blue uptake observed in isolated hepatocytes, provided further evidence of the hepatotoxicity of clomipramine. It can be concluded that impaired mitochondrial bioenergetics and cellular damage are important factors underlying the hepatotoxicity of clomipramine and that taking excessive amounts of clomipramine can lead to several risks including decreased ATP production, severe hypoglycemia, and potentially fatal outcomes.


Subject(s)
Chemical and Drug Induced Liver Injury , Clomipramine , Rats , Animals , Clomipramine/toxicity , Clomipramine/metabolism , Energy Metabolism , Liver/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Mitochondria, Liver/metabolism
3.
Photochem Photobiol Sci ; 22(2): 279-302, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36152272

ABSTRACT

Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 µM. Additionally, TBO (40 µM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.


Subject(s)
Chemical and Drug Induced Liver Injury , Mitochondria, Liver , Rats , Animals , Mitochondria, Liver/metabolism , Tolonium Chloride/metabolism , Tolonium Chloride/pharmacology , Energy Metabolism , Photosensitizing Agents/pharmacology , Adenosine Triphosphate/metabolism , Chemical and Drug Induced Liver Injury/metabolism
4.
Chem Biol Interact ; 364: 110054, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35872042

ABSTRACT

The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.


Subject(s)
Gluconeogenesis , Phloretin , Adenosine Triphosphate/metabolism , Animals , Blood Glucose/metabolism , Glucose/metabolism , Liver , Mitochondria, Liver/metabolism , Phloretin/pharmacology , Rats , Rats, Wistar
5.
Photodiagnosis Photodyn Ther ; 35: 102446, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34289416

ABSTRACT

BACKGROUND: The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS: Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS: AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS: Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Adenosine Triphosphate/metabolism , Animals , Azure Stains , Energy Metabolism , Liver , Mitochondria/metabolism , Photochemotherapy/methods , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Rats , Rats, Wistar
6.
Toxicology ; 455: 152766, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33775737

ABSTRACT

Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 µM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.


Subject(s)
Azure Stains/toxicity , Energy Metabolism/drug effects , Liver/drug effects , Mitochondria, Liver/drug effects , Adenosine Triphosphate/metabolism , Animals , Cell Survival/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Lipid Peroxidation/drug effects , Liver/pathology , Male , Mitochondria, Liver/pathology , Oxygen Consumption/drug effects , Protein Carbonylation/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism
7.
Free Radic Biol Med ; 153: 34-53, 2020 06.
Article in English | MEDLINE | ID: mdl-32315767

ABSTRACT

According to the literature, methylene blue (MB) is a photosensitizer (PS) with a high affinity for mitochondria. Therefore, several studies have explored this feature to evaluate its photodynamic effects on the mitochondrial apoptotic pathway under normoxic conditions. We are aware only of limited reports regarding MB's photodynamic effects on mitochondrial energy metabolism, especially under hypoxic conditions. Thus, the purposes of this study were to determine the direct and photodynamic acute effects of MB on the energy metabolism of rat liver mitochondria under hypoxic conditions and its direct acute effects on several parameters linked to energy metabolism in the isolated perfused rat liver. MB presented a high affinity for mitochondria, irrespective of photostimulation or proton gradient formation. Upon photostimulation, MB demonstrated high in vitro oxidizing species generation ability. Consequently, MB damaged the mitochondrial macromolecules, as could be evidenced by the elevated levels of lipid peroxidation and protein carbonyls. In addition to generating a pro-oxidant environment, MB also led to a deficient antioxidant defence system, as indicated by the reduced glutathione (GSH) depletion. Bioenergetically, MB caused uncoupling of oxidative phosphorylation and led to photodynamic inactivation of complex I, complex II, and F1FO-ATP synthase complex, thus decreasing mitochondrial ATP generation. Contrary to what is expected for an ideal PS, MB displayed appreciable dark toxicity on mitochondrial energy metabolism. The results indicated that MB acted via at least three mechanisms: direct damage to the inner mitochondrial membrane; uncoupling of oxidative phosphorylation; and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, MB also strongly inhibited mitochondrial ATP production. In the perfused rat liver, MB stimulated oxygen consumption, decreased the ATP/ADP ratio, inhibited gluconeogenesis and ureogenesis, and stimulated glycogenolysis, glycolysis, and ammoniagenesis, fully corroborating its uncoupling action in intact cells, as well. It can be concluded that even under hypoxic conditions, MB is a PS with potential for photodynamic effect-induced mitochondrial dysfunction. However, MB disrupts the mitochondrial energy metabolism even in the dark, causing energy-linked liver metabolic changes that could be harmful in specific circumstances.


Subject(s)
Methylene Blue , Photosensitizing Agents , Animals , Energy Metabolism , Methylene Blue/toxicity , Mitochondria/metabolism , Mitochondria, Liver/metabolism , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Rats
9.
Toxicol Lett ; 291: 158-172, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29626522

ABSTRACT

Citrus flavanones are often linked to their antihyperglycemic properties. This effect may be in part due to the inhibition of hepatic gluconeogenesis through different mechanisms. One of the possible mechanisms appears to be impairment of oxidative phosphorylation, which may also interfere with glycogen metabolism. Based on these facts, the purpose of the present study was to investigate the effects of three citrus flavanones on glycogenolysis in the isolated perfused rat liver. Hesperidin, hesperetin, and naringenin stimulated glycogenolysis and glycolysis from glycogen with concomitant changes in oxygen uptake. At higher concentrations (300 µM), hesperetin and naringenin clearly altered fructose and glucose metabolism, whereas hesperidin exerted little to no effects. In subcellular fractions hesperetin and naringenin inhibited the activity of glucose 6-phosphatase and glucokinase and the mitochondrial respiration linked to ADP phosphorylation. Hesperetin and naringenin also inhibited the transport of glucose into the cell. At a concentration of 300 µM, the glucose influx rate inhibition was 83% and 43% for hesperetin and naringenin, respectively. Hesperidin was the less active among the assayed citrus flavanones, indicating that the rutinoside moiety noticeably decrease the activity of these compounds. The effects on glycogenolysis and fructolysis were mainly consequence of an impairment on mitochondrial energy metabolism. The increased glucose release, due to the higher glycogenolysis, together with glucose transport inhibition is the opposite of what is expected for antihyperglycemic agents.


Subject(s)
Citrus/chemistry , Flavones/pharmacology , Liver Glycogen/metabolism , Liver/metabolism , Monosaccharides/metabolism , Adenosine Diphosphate/metabolism , Animals , Energy Metabolism/drug effects , Flavanones/pharmacology , Fructose/metabolism , Glucose/metabolism , Glycogenolysis/drug effects , Hesperidin/pharmacology , In Vitro Techniques , Liver/drug effects , Male , Oxygen Consumption/drug effects , Perfusion , Rats , Rats, Wistar
10.
Fitoterapia ; 92: 148-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24239748

ABSTRACT

It is well known that hyperglycaemia is the initiating cause of tissue damage associated with type 2 diabetes mellitus and that enhanced hepatic gluconeogenesis may account for the increase in blood glucose levels. The purpose of this work was to investigate the possible actions and mechanisms of three related citrus flavanones, namely hesperidin, hesperetin and naringenin, on hepatic gluconeogenesis and related parameters using isolated perfused rat liver. Hesperetin and naringenin (but not hesperidin) inhibited gluconeogenesis from lactate plus pyruvate, alanine and dihydroxyacetone. The inhibitory effects of these flavanones on gluconeogenesis from lactate and pyruvate (hesperetin IC50 75.6 µM; naringenin IC50 85.5 µM) as well as from alanine were considerably more pronounced than those from dihydroxyacetone. The main cause of gluconeogenesis inhibition is the reduction of pyruvate carboxylation by hesperetin (IC50 134.2 µM) and naringenin (IC50 143.5 µM) via inhibition of pyruvate transport into the mitochondria. Secondary causes are likely inhibition of energy metabolism, diversion of glucose 6-phosphate for glucuronidation reactions and oxidation of NADH by flavanone phenoxyl radicals. The influence of the structural differences between hesperetin and naringenin on their metabolic effects was negligible. Analytical evidence indicated that the presence of a rutinoside moiety in hesperidin noticeably decreases its metabolic effects, confirming that hesperetin and naringenin interact with intracellular enzymes and mitochondrial or cellular membranes better than hesperidin. Thus, the inhibition of the gluconeogenic pathway by citrus flavanones, which was similar to that of the drug metformin, may represent an attractive novel treatment strategy for type 2 diabetes.


Subject(s)
Citrus/chemistry , Flavanones/pharmacology , Gluconeogenesis/drug effects , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Liver/drug effects , Plant Extracts/pharmacology , Animals , Biological Transport , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Flavanones/therapeutic use , Glucose/biosynthesis , Hesperidin/pharmacology , Hesperidin/therapeutic use , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Phytotherapy , Plant Extracts/therapeutic use , Pyruvic Acid/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
11.
Biomed Res Int ; 2013: 342973, 2013.
Article in English | MEDLINE | ID: mdl-24288675

ABSTRACT

Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD⁺ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD⁺ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide.


Subject(s)
Antioxidants/administration & dosage , Flavanones/administration & dosage , Hesperidin/administration & dosage , Liver/metabolism , Animals , Citrus/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Oxidation-Reduction , Peroxisomes/drug effects , Rats , Reactive Oxygen Species/metabolism
12.
Chem Biol Interact ; 195(2): 119-32, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22137898

ABSTRACT

The flavonolignan silibinin, which is a mixture of two diastereoisomers, silybin A and silybin B, is a component of the extract obtained from the fruit and seeds of the variegated milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), known as silymarin. Among the therapeutic properties credited to silibinin, its antihyperglycaemic action has been extensively explored. Silibinin is structurally related to the flavonoids quercetin and fisetin, which have been previously demonstrated to be very active on liver metabolic processes related to glycaemic regulation. The aim of the present work was to investigate the effects of silibinin on metabolic pathways responsible for the maintenance of glycaemia, particularly glycogenolysis and gluconeogenesis, in the perfused rat liver. The activities of some key enzymes in these pathways and on parameters of energy metabolism in isolated mitochondria were also examined. At a concentration range of 50-300µM, silibinin inhibited gluconeogenesis in the fasted condition and inhibited glycogenolysis and glycolysis in the fed condition. The mechanisms by which silibinin exerted these actions were multiple and complex. It inhibited the activity of glucose 6-phosphatase, inhibited the pyruvate carrier, and reduced the efficiency of mitochondrial energy transduction. It can also act by reducing the supply of NADH for gluconeogenesis and mitochondria through its pro-oxidative actions. In general, the effects and the potency of silibinin were similar to those of quercetin and fisetin. However, silibinin exerted some distinct effects such as the inhibitory effect on oxygen consumption in the fed condition and a change in the energy status of the perfused livers. It can be concluded that the effects of silibinin on liver glucose metabolism may explain its antihyperglycaemic property. However, this effect was, in part, secondary to impairment in cellular energy metabolism, a finding that should be considered in its therapeutic usage.


Subject(s)
Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Metabolic Diseases/drug therapy , Mitochondria, Liver/drug effects , Silymarin/pharmacology , Animals , Blood Glucose/metabolism , Flavonolignans/metabolism , Gluconeogenesis/drug effects , Glycolysis/drug effects , Male , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mitochondria, Liver/enzymology , Mitochondria, Liver/metabolism , Oxygen Consumption/drug effects , Pyruvate Carboxylase/metabolism , Rats , Rats, Wistar , Silybin
SELECTION OF CITATIONS
SEARCH DETAIL
...