Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38431835

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Subject(s)
Respiratory Tract Diseases , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel , Aldehyde Oxidase/metabolism , Oxidoreductases/metabolism , Cytoskeletal Proteins/metabolism
2.
J Med Chem ; 64(7): 3843-3869, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33749283

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong in vivo target engagement in a rat AITC-induced pain assay, compound 20 was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound 21 was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.


Subject(s)
Asthma/drug therapy , Furans/therapeutic use , Purines/therapeutic use , TRPA1 Cation Channel/antagonists & inhibitors , Animals , Asthma/chemically induced , Asthma/complications , CHO Cells , Cricetulus , Furans/chemical synthesis , Furans/metabolism , Guinea Pigs , Humans , Inflammation/drug therapy , Inflammation/etiology , Ligands , Male , Molecular Structure , Ovalbumin , Oxadiazoles/chemical synthesis , Oxadiazoles/metabolism , Oxadiazoles/therapeutic use , Protein Binding , Purines/chemical synthesis , Purines/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPA1 Cation Channel/metabolism
4.
Bioorg Med Chem Lett ; 27(18): 4471-4477, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28844391

ABSTRACT

A class of substituted 1-thiazol-2-yl-N-3-methyl-1H-pyrozole-5-carboxylic acid derivatives was found to have potent anti-proliferative activity against a broad range of tumor cell lines. A compound from this class (14) was profiled across a broad panel of hematologic and solid tumor cancer cell lines demonstrating cell cycle arrest at the G0/G1 interphase and has potent anti-proliferative activity against a distinct and select set of cancer cell types with no observed effects on normal human cells. An example is the selective inhibition of human B-cell lymphoma cell line (BJAB). Compound 14 was orally bioavailable and tolerated well in mice. Synthesis and structure activity relationships (SAR) in this series of compounds are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Carboxylic Acids/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carboxylic Acids/administration & dosage , Carboxylic Acids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry , Tissue Distribution
5.
J Org Chem ; 82(10): 5046-5067, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28441020

ABSTRACT

Herein we report the discovery of the benzo[a]imidazo[2,1,5-c,d]indolizine motif displaying tunable emission covering most of the visible spectrum. The polycyclic core is obtained from readily available amides via a chemoselective process involving Tf2O-mediated amide cyclodehydration, followed by intramolecular C-H arylation. Additionally, these fluorescent heterocycles are easily functionalized using electrophilic reagents, enabling divergent access to varied substitution. The effects of said substitution on the compounds' photophysical properties were rationalized by density functional theory calculations. For some compounds, emission wavelengths are directly correlated to the substituent's Hammett constants. Easily introduced nonconjugated reactive functional groups allow the labeling of biomolecules without modification of emissive properties. This work provides a straightforward platform for the synthesis of new moderately bright fluorescent dyes remarkable for their chemical stability, predictability, and unusually high excitation-emission differential.

6.
Chem Commun (Camb) ; 50(52): 6883-5, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24836467

ABSTRACT

A practical and highly stereoselective approach to access 2,6-disubstituted piperidines using an amidine auxiliary is reported. Following the diastereoselective addition of Grignard reagents at the 2-position of an activated pyridinium salt, the amidine group directs a regioselective metalation at the 6-position, enabling further functionalization. A subsequent electrophilic quench or a Negishi cross-coupling could be performed, resulting in 2,6-disubstituted dihydropyridines. These were reduced to the saturated piperidine rings with high diastereoselectivity.


Subject(s)
Amidines/chemistry , Dihydropyridines/chemistry , Piperidines/chemical synthesis , Molecular Structure , Stereoisomerism
7.
Bioorg Med Chem Lett ; 23(13): 3841-7, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23726345

ABSTRACT

We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure-activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile. 31d-1, 31d-2, 31f showed good exposures in CD-1 mice. The mechanism of action was discovered to be a host target: the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). The identification of the pan-HRV active compound 31f combined with a structurally distinct literature compound T-00127-HEV1 allowed the assessment of target related tolerability of inhibiting this kinase for a short period of time in order to prevent HRV replication.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Rhinovirus/drug effects , Thiazoles/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL