Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(17): 19057-19062, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708201

ABSTRACT

The dramatic increase in plastics production, coupled with a low recycling and recovery rate, has been a major challenge for sustainable practices and combating climate change. Hydrotreatment processing to upgrade fuel oils is a well-known process in the petroleum industry. In this work, we aim to investigate the catalyst properties before and after the hydrotreatment of pyrolysis oil derived from plastics, namely, linear low-density polyethylene, as no such report is available in the literature. Granular and powder forms of the Pt/Al2O3 catalyst were used in this study with characterization methods executed as such: transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and IR-RIS. XRD data show that the crystallinity of the catalyst support was unaffected by the hydrotreatment without any residues left, as the characteristic diffraction peaks were indicated for the crystalline phase of the support as 37.4, 39.8, 46.3, and 67.3°. In addition, the TGA experiments revealed that the carbon deposition on the spent catalyst was higher, as indicated by the higher weight loss (15.359%) compared to the fresh catalyst sample (11.43%). XPS analysis showed that the carbon deposition is more intense on the granular spent catalyst, as the intensity of the peaks is some 15 times greater than the peaks from the fresh catalyst. Also, compared to the observed peaks of the powder catalyst, less coke is formed. The band at 1624.05 cm-1 from the IR-RIS spectra was attributed to a shifted C=O band from the coke formation. The extension of these investigations using different catalysts to improve their characteristics and performance and to inhibit coke deposition will contribute to the incorporation of such processes in industry as well as the cost of fuels.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063689

ABSTRACT

The need to replace conventional fuels with renewable sources is a great challenge for the science community. H2 is a promising alternative due to its high energy density and availability. H2 generation from formic acid (FA) decomposition occurred in a batch and a packed-bed flow reactor, in mild conditions, using a 2% Pd6Zn4/HHT (high heated treated) catalyst synthesised via the sol-immobilisation method. Experimental and theoretical studies took place, and the results showed that in the batch system, the conversion was enhanced with increasing reaction temperature, while in the continuous flow system, the conversion was found to decrease due to the deactivation of the catalyst resulting from the generation of the poisoning CO. Computational fluid dynamics (CFD) studies were developed to predict the conversion profiles, which demonstrated great validation with the experimental results. The model can accurately predict the decomposition of FA as well as the deactivation that occurs in the continuous flow system. Of significance was the performance of the packed-bed flow reactor, which showed improved FA conversion in comparison to the batch reactor, potentially leading to the utilisation of continuous flow systems for future fuel cell applications for on-site H2 production.

3.
Ultrason Sonochem ; 100: 106610, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806038

ABSTRACT

Sonochemical-assisted synthesis has flourished recently for the design of photocatalysts. The main power used is ultrasound that allows the nanomaterials shape and size modification and control. This review highlights the effect in formation mechanism by ultrasound application and the most common photocatalysts that were prepared via sonochemical techniques. Moreover, the challenge for the suitable reactor design for the synthesis of materials or for their photocatalytic evaluation is discussed since the most prominent reactor systems, batch, and continuous flow, has both advantages and drawbacks. This work summarises the significance of sonochemical synthesis for photocatalytic materials as a green technology that needs to be further investigated for the preparation of new materials and the scale up of developed reactor systems to meet industrial needs.

4.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513271

ABSTRACT

Sustainable alternatives to conventional fuels have emerged recently, focusing on a hydrogen-based economy. The idea of using hydrogen (H2) as an energy carrier is very promising due to its zero-emission properties. The present study investigates the formic acid (FA) decomposition for H2 generation using a commercial 5 wt.% Pd/C catalyst. Three different 2D microreactor configurations (packed bed, single membrane, and double membrane) were studied using computational fluid dynamics (CFD). Parameters such as temperature, porosity, concentration, and flow rate of reactant were investigated. The packed bed configuration resulted in high conversions, but due to catalyst poisoning by carbon monoxide (CO), the catalytic activity decreased with time. For the single and double membrane microreactors, the same trends were observed, but the double membrane microreactor showed superior performance compared with the other configurations. Conversions higher than 80% were achieved, and even though deactivation decreased the conversion after 1 h of reaction, the selective removal of CO from the system with the use of membranes lead to an increase in the conversion afterwards. These results prove that the incorporation of membranes in the system for the separation of CO is improving the efficiency of the microreactor.

5.
Environ Res ; 236(Pt 1): 116760, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37507039

ABSTRACT

Greenhouse gas emissions are a massive concern for scientists to minimize the effect of global warming in the environment. In this study, packed bed, coated wall, and membrane reactors were investigated using three novel nickel catalysts for the methanation of CO2. CFD modelling methodologies were implemented to develop 2D models. The validity of the model was investigated in a previous study where experimental and simulated results in a packed bed reactor were in a good agreement. It was observed that the coated wall reactor had poorer performance compared to the packed bed, approximately 30% difference between the results, as the residence time of the former was lower. In addition, two membrane configurations were proposed, including a membrane packed bed and membrane coated wall reactor. Additional studies were performed in the coated wall reactor revealing that lower flow rates lead to higher conversion values. As for the bed thickness the optimum layer was found to be 1 mm. In both membrane reactor configurations, the effect of the thickness of M1 membrane, which indicates the membrane for the removal of H2O, didn't show difference while the reduction of the thickness of M2 membrane, which indicates the membrane for the removal of CO2, H2 and H2O, showed better results in terms of conversion.


Subject(s)
Carbon Dioxide , Nickel
6.
J Environ Manage ; 323: 116181, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36108508

ABSTRACT

Electronic waste (e-waste) has become one of the major causes of environmental concerns due to its large volume, high generation rate and toxic environmental burdens. Recent estimates put e-waste generation at about 54 million tonnes per annum with figures reaching approximately 75 million tonnes per annum by 2030. In this manuscript, the state-of-the-art technologies and techniques for segregation, recovery and recycling of e-waste with a special focus on the valorisation aspects of e-plastics and e-metals which are critically reviewed. A history and insight into environmental aspects and regulation/legislations are presented including those that could be adopted in the near future for e-waste management. The prospects of implementing such technologies in the State of Kuwait for the recovery of materials and energy from e-waste where infrastructure is lacking still for waste management are presented through Material Flow Analysis. The information showed that Kuwait has a major problem in waste accumulation. It is estimated that e-waste in Kuwait (with no accumulation or backlog) is generated at a rate of 67,000 tpa, and the imports of broadcasting electronics generate some 19,428 tonnes. After reviewing economic factors of potential recovered plastics, iron and glass from broadcasting devices in Kuwait as e-waste, a total revenue of $399,729 per annum is estimated from their valorisation. This revenue will open the prospect of ventures for other e-waste and fuel recovery options as well as environmental benefits and the move to a circular economy.


Subject(s)
Electronic Waste , Waste Management , Electronic Waste/analysis , Iron , Kuwait , Plastics , Recycling/methods
7.
Waste Manag Res ; 39(7): 910-913, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33323044

ABSTRACT

The year 2020 has been noted to be one of major calamity the world over, in which the majority of efforts in research and development have been dedicated towards combating the threat of the novel Coronavirus (COVID-19). Ever since the announcement of COVID-19 as a pandemic, such efforts were dedicated towards the research of its spread and vaccination. Yet still, the world might reach a resolution via an environmental solution that various entities have overlooked, with a plethora of environmental benefits vis-à-vis waste management. In this short communication, the possibility of using plastic solid waste as a substrate to employ copper, and copper alloys and their nanocomposite nanopowders to be used as permanent surface protective coats, is presented. The fact that we present such materials to be of waste origin, is an added value advantage to their beneficial advantage of developing various commodities and products that could be used in our daily lives. Furthermore, the fact that such recyclable materials are susceptible to antiviral properties and chemicals, is an added value that we should not neglect.


Subject(s)
COVID-19 , Waste Management , Humans , Pandemics , Plastics , SARS-CoV-2
8.
RSC Adv ; 10(68): 41680-41692, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516550

ABSTRACT

A Computational Fluid Dynamics (CFD) study has been conducted to assess the performance of packed bed and coated wall microreactors for the steam reforming of methanol with a CuO/ZnO/Al2O3 based catalyst (BASF F3-01). The results obtained were compared to experimental data from the literature to assess the validity and robustness of the models, and a good validation has been obtained. The performance of the packed bed and coated wall microreactors is similar at a constant reforming temperature. It was found that methanol conversion is enhanced with increasing temperature, residence time, steam to methanol ratio, and catalyst coating thickness. Furthermore, internal and external mass transfer phenomena were investigated using the models, and it was found that there were no internal and external mass transfer resistances for this reactor configuration. Further studies demonstrated that larger catalyst pellet sizes led to the presence of internal mass transfer resistance, which in turn causes lower methanol conversions. The CFD models have exhibited a sound agreement with the experimental data, hence they can be used to predict the steam reforming of methanol in microreactors.

9.
Waste Manag Res ; 37(11): 1127-1141, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31571531

ABSTRACT

Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This article reviews the practices that govern the management approaches utilized in the developed world for industrial spent catalysts. It critically assesses the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a strategy for a way forward based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed at length covering conventional methods of valuable metals and chemicals recovery (e.g., hydrometallurgical, solid-liquid and liquid-liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorization industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait.


Subject(s)
Industrial Waste , Waste Management , Europe , Hazardous Waste , Kuwait
10.
Environ Manage ; 64(2): 230-244, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31230103

ABSTRACT

Over the past few decades, life cycle assessment (LCA) has been established as a critical tool for the evaluation of the environmental burdens of chemical processes and materials cycles. The increasing amount of plastic solid waste (PSW) in landfills has raised serious concern worldwide for the most effective treatment. Thermochemical post-treatment processes, such as pyrolysis, seem to be the most appropriate method to treat this type of waste in an effective manner. This is because such processes lead to the production of useful chemicals, or hydrocarbon oil of high calorific value (i.e. bio-oil in the case of pyrolysis). LCA appears to be the most appropriate tool for the process design from an environmental context. However, addressed limitations including initial assumptions, functional unit and system boundaries, as well as lack of regional database and exclusion of socio-economic aspects, may hinder the final decision. This review aims to address the benefits of pyrolysis as a method for PSW treatment and raise the limitations and gaps of conducted research via an environmental standpoint.


Subject(s)
Solid Waste , Waste Management , Conservation of Natural Resources , Plastics , Recycling , Waste Disposal Facilities
11.
Environ Pollut ; 233: 782-796, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29132119

ABSTRACT

The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Cities , Environmental Monitoring , Wind , Air Pollution/analysis , London , Models, Theoretical , Physical Phenomena
12.
Analyst ; 139(1): 266-72, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24223420

ABSTRACT

Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 µm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 µm and the microchannel depth 100 µm. The micropillars were wetted by the water/acetone solution and formed a 15 µm liquid film between them and the nearest channel wall, leaving a 195 µm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 µm and 200 µm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...