Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 29(31): 5156-5158, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35440295

Subject(s)
Drug Discovery , Humans , Mutation
2.
Front Pharmacol ; 13: 837534, 2022.
Article in English | MEDLINE | ID: mdl-35370739

ABSTRACT

Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu' Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.

3.
Pflugers Arch ; 472(7): 961-975, 2020 07.
Article in English | MEDLINE | ID: mdl-32361781

ABSTRACT

In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.


Subject(s)
Chloride Channels/metabolism , Chlorides/metabolism , Muscle, Skeletal/metabolism , Animals , Humans , Myotonia Congenita/metabolism
4.
Exp Neurol ; 328: 113287, 2020 06.
Article in English | MEDLINE | ID: mdl-32205118

ABSTRACT

The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 µM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 µM for closed channels and 9 µM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 µM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 µM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.


Subject(s)
Alanine/analogs & derivatives , Benzylamines/pharmacology , Muscle, Skeletal/drug effects , Myotonia , NAV1.4 Voltage-Gated Sodium Channel/drug effects , Action Potentials/drug effects , Alanine/pharmacology , Animals , HEK293 Cells , Humans , Male , Rats , Rats, Wistar
5.
Acta Myol ; 39(4): 307-312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33458586

ABSTRACT

In 2019-2020, the SARS-CoV-2 pandemic has shocked the world and most health care systems, and a "second wave" of the viral spread is ongoing in Europe and in Italy too. While, at the initial outbreak, the treatment of patients had focused on the respiratory symptoms, many diverse clinical manifestations of the disease have to date been reported. However, the complete course of the disease has not yet been fully clarified. In particular, several reports from the real-world clinical practice have highlighted the noxious effects of SARS-CoV-2 on skeletal muscles. In this brief review, we summarized the main current findings about muscular and neuromuscular damages that may be triggered by the virus or by the drugs used to treat COVID-19. Moreover, we underlined the need of attentive care and vigilance for patients with neuro-muscular disorders, who may be particularly susceptible to infection and at increased risk for severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Muscle, Skeletal , Muscular Diseases/chemically induced , Muscular Diseases/virology , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2
6.
Pharmacol Res ; 141: 224-235, 2019 03.
Article in English | MEDLINE | ID: mdl-30611854

ABSTRACT

Sodium channel myotonia and paramyotonia congenita are caused by gain-of-function mutations in the skeletal muscle voltage-gated sodium channel hNav1.4. The first-line drug is the sodium channel blocker mexiletine; however, some patients show side effects or limited responses. We previously showed that two hNav1.4 mutations, p.G1306E and p.P1158L, reduce mexiletine potency in vitro, whereas another sodium channel blocker, flecainide, is less sensitive to mutation-induced gating defects. This observation was successfully translated to p.G1306E and p.P1158L carriers. Thus, the aim of this study was to perform a pharmacological characterization of myotonic Nav1.4 mutations clustered near the fast inactivation gate of the channel. We chose seven mutations (p.V1293I, p.N1297S, p.N1297K, p.F1298C, p.G1306E, p.I1310N, and p.T1313M) from the database of Italian and French networks for muscle channelopathies. Recombinant hNav1.4 mutants were expressed in HEK293T cells for functional and pharmacological characterization using the patch-clamp technique. All the studied mutations impair the kinetics and/or voltage dependence of fast inactivation, which is likely the main mechanism responsible for myotonia. The severity of myotonia is well-correlated to the enhancement of window currents generated by the intersection of the activation and fast inactivation voltage dependence. Five of the six mutants displaying a significant positive shift of fast inactivation voltage dependence reduced mexiletine inhibition in an experimental condition mimicking myotonia. In contrast, none of the mutations impairs flecainide block nor does p.T1313M impair propafenone block, indicating that class Ic antiarrhythmics may constitute a valuable alternative. Our study suggests that mutation-driven therapy would be beneficial to myotonic patients, greatly improving their quality of life.


Subject(s)
Myotonic Disorders/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Child , Child, Preschool , Female , HEK293 Cells , Humans , Infant, Newborn , Ion Channel Gating , Male , Middle Aged , Mutation , Myotonic Disorders/drug therapy , Young Adult
7.
Methods Mol Biol ; 1800: 313-326, 2018.
Article in English | MEDLINE | ID: mdl-29934900

ABSTRACT

Ion channels are membrane proteins involved in almost all physiological processes, including neurotransmission, muscle contraction, pace-making activity, secretion, electrolyte and water balance, immune response, and cell proliferation. Due to their broad distribution in human body and physiological roles, ion channels are attractive targets for drug discovery and safety pharmacology. Over the years ion channels have been associated to many genetic diseases ("channelopathies"). For most of these diseases the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a number of patients. The search for the development of new and more specific therapeutic approaches is therefore strongly pursued. At the same time acquired channelopathies or dangerous side effects (such as proarrhythmic risk) can develop as a consequence of drugs unexpectedly targeting ion channels. Several noncardiovascular drugs are known to block cardiac ion channels, leading to potentially fatal delayed ventricular repolarization. Thus, the search of reliable preclinical cardiac safety testing in early stage of drug discovery is mandatory. To fulfill these needs, both ion channels drug discovery and toxicology strategies are evolving toward comprehensive research approaches integrating ad hoc designed in silico predictions and experimental studies for a more reliable and quick translation of results to the clinic side.Here we discuss two examples of how the combination of in silico methods and patch clamp experiments can help addressing drug discovery and safety issues regarding ion channels.


Subject(s)
Drug Discovery/methods , Ion Channels/chemistry , Models, Molecular , Pharmacovigilance , Animals , Cardiotoxicity , Databases, Chemical , Drug Evaluation, Preclinical , Humans , Ion Channels/agonists , Ion Channels/antagonists & inhibitors , Ligands , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Cells/metabolism , Patch-Clamp Techniques , Quantitative Structure-Activity Relationship , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Toxicology/methods
8.
Hum Mutat ; 39(9): 1273-1283, 2018 09.
Article in English | MEDLINE | ID: mdl-29935101

ABSTRACT

Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.


Subject(s)
Chloride Channels/genetics , DNA Mutational Analysis , Mutation/genetics , Myotonia Congenita/genetics , Adolescent , Adult , Amino Acids/genetics , Female , Humans , Ion Channel Gating/genetics , Male , Middle Aged , Myotonia Congenita/drug therapy , Myotonia Congenita/physiopathology , Patch-Clamp Techniques , Peptides/genetics , Protein Domains/genetics
9.
G Ital Nefrol ; 35(3)2018 May.
Article in Italian | MEDLINE | ID: mdl-29786180

ABSTRACT

Bartter syndromes (BS) types 1-5 are rare salt-losing tubulopathies presenting with overlapping clinical phenotypes including marked salt wasting and hypokalemia leading to polyuria, polydipsia, volume contraction, muscle weakness and growth retardation. These diseases are due to an impairment of sodium, potassium, chloride reabsorption caused by mutations in genes encoding for ion channel or transporters expressed in specific nephron tubule segments. Particularly, BS type 3 is a clinically heterogeneous form caused by mutations in CLCNKB gene which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. Specific therapy for BS is lacking and the only pharmacotherapy up today available is purely symptomatic and characterized by limiting side effects. The improvement of our understanding of the phenotype/genotype correlation and of the precise pathogenic mechanisms associated with BS type 3 as well as the pharmacological characterization of ClC-K chloride channels are fundamental to design therapies tailored upon patients' mutation. This mini review focused on recent studies representing relevant forward steps in the field as well as noteworthy examples of how basic and clinical research can cooperate to gain insight into the pathophysiology of this renal channelopathy, paving the way for a personalized therapy.


Subject(s)
Bartter Syndrome/drug therapy , Rare Diseases/drug therapy , Bartter Syndrome/epidemiology , Bartter Syndrome/genetics , Bartter Syndrome/physiopathology , Chloride Channels/deficiency , Chloride Channels/genetics , Chlorides/metabolism , Drug Design , Genes, Recessive , Genetic Association Studies , Humans , Ion Channels/genetics , Ion Channels/metabolism , Ion Transport , Nephrons/metabolism , Pharmacogenetics , Potassium/metabolism , Precision Medicine , Rare Diseases/epidemiology , Rare Diseases/genetics , Sodium/metabolism
10.
Mol Cell Neurosci ; 83: 6-12, 2017 09.
Article in English | MEDLINE | ID: mdl-28666963

ABSTRACT

Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.


Subject(s)
Ataxia/genetics , Kv1.1 Potassium Channel/metabolism , Mutation, Missense , Myokymia/genetics , Ataxia/metabolism , Ataxia/pathology , Female , HEK293 Cells , Humans , Ion Channel Gating , Kv1.1 Potassium Channel/chemistry , Kv1.1 Potassium Channel/genetics , Middle Aged , Myokymia/metabolism , Myokymia/pathology , Pedigree
12.
Br J Pharmacol ; 174(13): 1972-1983, 2017 07.
Article in English | MEDLINE | ID: mdl-28334417

ABSTRACT

BACKGROUND AND PURPOSE: Human ClC-K chloride channels are highly attractive targets for drug discovery as they have a variety of important physiological functions and are associated with genetic disorders. These channels are crucial in the kidney as they control chloride reabsorption and water diuresis. In addition, loss-of-function mutations of CLCNKB and BSND genes cause Bartter's syndrome (BS), whereas CLCNKA and CLCNKB gain-of-function polymorphisms predispose to a rare form of salt sensitive hypertension. Both disorders lack a personalized therapy that is in most cases only symptomatic. The aim of this study was to identify novel ClC-K ligands from drugs already on the market, by exploiting the pharmacological side activity of drug molecules available from the FDA Adverse Effects Reporting System database. EXPERIMENTAL APPROACH: We searched for drugs having a Bartter-like syndrome as a reported side effect, with the assumption that BS could be causatively related to the block of ClC-K channels. The ability of the selected BS-causing drugs to bind and block ClC-K channels was then validated through an integrated experimental and computational approach based on patch clamp electrophysiology in HEK293 cells and molecular docking simulations. KEY RESULTS: Valsartan and olmesartan were able to block ClC-Ka channels and the molecular requirements for effective inhibition of these channels have been identified. CONCLUSION AND IMPLICATIONS: These results suggest additional mechanisms of action for these sartans further to their primary AT1 receptor antagonism and propose these compounds as leads for designing new potent ClC-K ligands.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Chloride Channels/antagonists & inhibitors , Imidazoles/pharmacology , Pharmacovigilance , Tetrazoles/pharmacology , Valsartan/pharmacology , Angiotensin II Type 1 Receptor Blockers/chemistry , Chloride Channels/metabolism , Databases, Factual , Dose-Response Relationship, Drug , Humans , Imidazoles/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Tetrazoles/chemistry , Valsartan/chemistry
13.
J Cachexia Sarcopenia Muscle ; 8(3): 386-404, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28294567

ABSTRACT

BACKGROUND: Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. METHODS: By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. RESULTS: Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca2+ ]i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. CONCLUSIONS: Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia.


Subject(s)
Cachexia/etiology , Cachexia/metabolism , Calcium/metabolism , Cisplatin/adverse effects , Ghrelin/metabolism , Homeostasis , Muscle, Skeletal/metabolism , Animals , Biomarkers , Body Weight/drug effects , Cachexia/pathology , Disease Models, Animal , Gene Expression Profiling , Ghrelin/pharmacology , Male , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Rats
14.
Front Pharmacol ; 7: 121, 2016.
Article in English | MEDLINE | ID: mdl-27242528

ABSTRACT

In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

15.
Pharmacol Res Perspect ; 2(1): e00028, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25505577

ABSTRACT

The ATP-sensitive K(+) (KATP) channel is an emerging pathway in the skeletal muscle atrophy which is a comorbidity condition in diabetes. The "in vitro" effects of the sulfonylureas and glinides were evaluated on the protein content/muscle weight, fibers viability, mitochondrial succinic dehydrogenases (SDH) activity, and channel currents in oxidative soleus (SOL), glycolitic/oxidative flexor digitorum brevis (FDB), and glycolitic extensor digitorum longus (EDL) muscle fibers of mice using biochemical and cell-counting Kit-8 assay, image analysis, and patch-clamp techniques. The sulfonylureas were: tolbutamide, glibenclamide, and glimepiride; the glinides were: repaglinide and nateglinide. Food and Drug Administration-Adverse Effects Reporting System (FDA-AERS) database searching of atrophy-related signals associated with the use of these drugs in humans has been performed. The drugs after 24 h of incubation time reduced the protein content/muscle weight and fibers viability more effectively in FDB and SOL than in the EDL. The order of efficacy of the drugs in reducing the protein content in FDB was: repaglinide (EC50 = 5.21 × 10(-6)) ≥ glibenclamide(EC50 = 8.84 × 10(-6)) > glimepiride(EC50 = 2.93 × 10(-5)) > tolbutamide(EC50 = 1.07 × 10(-4)) > nateglinide(EC50 = 1.61 × 10(-4)) and it was: repaglinide(7.15 × 10(-5)) ≥ glibenclamide(EC50 = 9.10 × 10(-5)) > nateglinide(EC50 = 1.80 × 10(-4)) ≥ tolbutamide(EC50 = 2.19 × 10(-4)) > glimepiride(EC50=-) in SOL. The drug-induced atrophy can be explained by the KATP channel block and by the enhancement of the mitochondrial SDH activity. In an 8-month period, muscle atrophy was found in 0.27% of the glibenclamide reports in humans and in 0.022% of the other not sulfonylureas and glinides drugs. No reports of atrophy were found for the other sulfonylureas and glinides in the FDA-AERS. Glibenclamide induces atrophy in animal experiments and in human patients. Glimepiride shows less potential for inducing atrophy.

16.
Biochem Pharmacol ; 91(2): 266-75, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24998494

ABSTRACT

We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.


Subject(s)
Muscular Atrophy/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Staurosporine/pharmacology , Sulfonylurea Receptors/metabolism , Animals , Diazoxide/pharmacology , Enzyme Inhibitors/pharmacology , Male , Mice , Muscle, Skeletal/pathology , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics
17.
J Hum Genet ; 58(9): 581-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23739125

ABSTRACT

Myotonia congenita is a genetic disease characterized by impaired muscle relaxation after forceful contraction (myotonia) and caused by mutations in the chloride channel voltage-sensitive 1 (CLCN1) gene, encoding the voltage-gated chloride channel of skeletal muscle (ClC-1). In a large cohort of clinically diagnosed unrelated probands, we identified 75 different CLCN1 mutations in 106 individuals, among which 29 were novel mutations and 46 had already been reported. Despite the newly described mutations being scattered throughout the gene, in our patients, mutations were mostly found in exons 4 and 5. Most of the novel mutations located in the region comprising the intramembrane helices are involved in the ion-conducting pathway and predicted to affect channel function. We report for the first time that two mutations, inherited on the same allele as a heterozygous trait, abrogate disease expression, although when inherited singularly they were pathogenic. Such a mode of inheritance might explain the incomplete penetrance reported for autosomal dominant mutations in particular families.


Subject(s)
Chloride Channels/genetics , Myotonia Congenita/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Chloride Channels/chemistry , Cohort Studies , DNA Mutational Analysis , Exons , Female , Humans , Italy/epidemiology , Male , Middle Aged , Mutation , Myotonia Congenita/epidemiology , Young Adult
18.
PLoS One ; 7(3): e33232, 2012.
Article in English | MEDLINE | ID: mdl-22470446

ABSTRACT

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.


Subject(s)
Adaptation, Physiological , Muscle, Skeletal/metabolism , Weightlessness , Animals , Down-Regulation , Immunohistochemistry , Insulin-Like Growth Factor I/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Myosin Heavy Chains/metabolism , Nitric Oxide Synthase Type I/metabolism , Potassium Channels, Calcium-Activated/metabolism , Rats , Space Flight , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
19.
J Physiol ; 554(Pt 2): 321-34, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14608015

ABSTRACT

Flecainide, a class IC antiarrhythmic, was shown to improve myotonia caused by sodium channel mutations in situations where the class IB antiarrhythmic drug mexiletine was less efficient. Yet little is known about molecular interactions between flecainide and human skeletal muscle sodium (hNa(v)1.4) channels. Whole-cell sodium currents (I(Na)) were recorded in tsA201 cells expressing wild-type (WT) and mutant hNa(v)1.4 channels (R1448C, paramyotonia congenita; G1306E, potassium-aggravated myotonia). At a holding potential (HP) of -120 mV, flecainide use-dependently blocked WT and G1306E I(Na) equally but was more potent on R1448C channels. For WT, the extent of block depended on a holding voltage more negative than the activation threshold, being greater at -90 mV as compared to -120 and -180 mV. This behaviour was exacerbated by the R1448C mutation since block at -120 mV was greater than that at -180 mV. Thus flecainide can bind to inactivated sodium channels in the absence of channel opening. Nevertheless, all the channels showed the same closed-state affinity constant (K(R) approximately 480 microM) and the same inactivated-state affinity constant (K(I) approximately 18 microM). Simulations according to the modulated receptor hypothesis mimic the voltage-dependent block of WT and mutant channels by flecainide and mexiletine. All the results suggest similar blocking mechanisms for the two drugs. Yet, since flecainide exerts use-dependent block at lower frequency than mexiletine, it may exhibit greater benefit in all myotonic syndromes. Moreover, flecainide blocks hNa(v)1.4 channel mutants with a rightward shift of availability voltage dependence more specifically than mexiletine, owing to a lower K(R)/K(I) ratio. This study offers a pharmacogenetic strategy to better address treatment in individual myotonic patients.


Subject(s)
Flecainide/pharmacology , Muscle Proteins/antagonists & inhibitors , Mutation , Myotonia/drug therapy , Sodium Channel Blockers/pharmacology , Dose-Response Relationship, Drug , Flecainide/metabolism , Humans , Ion Channel Gating/drug effects , Muscle Proteins/metabolism , Myotonia/genetics , Myotonia/metabolism , NAV1.4 Voltage-Gated Sodium Channel , Sodium Channel Blockers/metabolism , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...