Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769235

ABSTRACT

Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.


Subject(s)
Down Syndrome , Heart Defects, Congenital , MicroRNAs , Humans , Animals , Down Syndrome/complications , Down Syndrome/genetics , Trisomy , Heart Defects, Congenital/genetics , MicroRNAs/genetics , Extracellular Matrix/genetics , Chromosomes, Human, Pair 21/genetics , Disease Models, Animal
2.
Front Genet ; 13: 867989, 2022.
Article in English | MEDLINE | ID: mdl-35646085

ABSTRACT

Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18-20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.

3.
Front Genet ; 13: 824922, 2022.
Article in English | MEDLINE | ID: mdl-35356434

ABSTRACT

Down syndrome is a neurodevelopmental disorder frequently characterized by other developmental defects, such as congenital heart disease. Analysis of gene expression profiles of hearts from trisomic fetuses have shown upregulation of extracellular matrix (ECM) genes. The aim of this work was to identify genes on chromosome 21 potentially responsible for the upregulation of ECM genes and to pinpoint any functional consequences of this upregulation. By gene set enrichment analysis of public data sets, we identified the transcription factor RUNX1, which maps to chromosome 21, as a possible candidate for regulation of ECM genes. We assessed that approximately 80% of ECM genes overexpressed in trisomic hearts have consensus sequences for RUNX1 in their promoters. We found that in human fetal fibroblasts with chromosome 21 trisomy there is increased expression of both RUNX1 and several ECM genes, whether located on chromosome 21 or not. SiRNA silencing of RUNX1 reduced the expression of 11 of the 14 ECM genes analyzed. In addition, collagen IV, an ECM protein secreted in high concentrations in the culture media of trisomic fibroblasts, was modulated by RUNX1 silencing. Attenuated expression of RUNX1 increased the migratory capacity of trisomic fibroblasts, which are characterized by a reduced migratory capacity compared to euploid controls.

4.
Biology (Basel) ; 10(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209429

ABSTRACT

BACKGROUND: The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS: Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS: NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS: Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.

5.
J Matern Fetal Neonatal Med ; 34(18): 3089-3093, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31630581

ABSTRACT

X-linked Opitz G/BBB syndrome (XLOS) is a multiple congenital disorder inherited in an X-linked manner. XLOS may be suspected, in prenatal age, on the basis of sonographic findings in the second and/or third trimester of gestation. Pathogenetic variants in MID1 gene have been reported in individuals with XLOS. Prenatal genetic testing is offered for pregnancies at risk, in which the mutation in the family has been identified. To date no cases of prenatal diagnosis, based on first-trimester ultrasound data, have been reported. We present a case of a fetus at 12 gestational weeks with ultrasound multiple anomalies, including increased nuchal translucency, heart defects, cleft lip and palate, enlarged fourth ventricle absence of ductus venosus and family hystory of XLOS. The genetic prenatal test detected the c(0).1286-1G > T mutation of MID1 gene. Data about prenatal ultrasonographic findings consistent with XLOS are limited to second and third trimester. This is the first case reporting ultrasound detectable midline defects suggestive of XLOS as early as the first trimester of gestation. This case also suggests that when multiple anomalies are detected in a fetus with normal chromosomal structure, the possibility of a monogenic disorder must be considered.


Subject(s)
Cleft Lip , Cleft Palate , Hypertelorism , Esophagus/abnormalities , Female , Genetic Diseases, X-Linked , Humans , Hypospadias , Pregnancy , Pregnancy Trimester, First , Ultrasonography, Prenatal
7.
Int J Mol Sci ; 21(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365535

ABSTRACT

Mitochondria are organelles that mainly control energy conversion in the cell. In addition, they also participate in many relevant activities, such as the regulation of apoptosis and calcium levels, and other metabolic tasks, all closely linked to cell viability. Functionality of mitochondria appears to depend upon their network architecture that may dynamically pass from an interconnected structure with long tubular units, to a fragmented one with short separate fragments. A decline in mitochondrial quality, which presents itself as an altered structural organization and a function of mitochondria, has been observed in Down syndrome (DS), as well as in aging and in age-related pathologies. This review provides a basic overview of mitochondrial dynamics, from fission/fusion mechanisms to mitochondrial homeostasis. Molecular mechanisms determining the disruption of the mitochondrial phenotype in DS and aging are discussed. The impaired activity of the transcriptional co-activator PGC-1α/PPARGC1A and the hyperactivation of the mammalian target of rapamycin (mTOR) kinase are emerging as molecular underlying causes of these mitochondrial alterations. It is, therefore, likely that either stimulating the PGC-1α activity or inhibiting mTOR signaling could reverse mitochondrial dysfunction. Evidence is summarized suggesting that drugs targeting either these pathways or other factors affecting the mitochondrial network may represent therapeutic approaches to improve and/or prevent the effects of altered mitochondrial function. Overall, from all these studies it emerges that the implementation of such strategies may exert protective effects in DS and age-related diseases.


Subject(s)
Aging/metabolism , Down Syndrome/etiology , Down Syndrome/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Dynamics , Aging/drug effects , Aging/genetics , Animals , Biomarkers , Disease Susceptibility , Down Syndrome/drug therapy , Homeostasis , Humans , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Molecular Targeted Therapy , Signal Transduction/drug effects
8.
Front Genet ; 10: 606, 2019.
Article in English | MEDLINE | ID: mdl-31316549

ABSTRACT

Mitochondrial dysfunction plays a primary role in neurodevelopmental anomalies and neurodegeneration of Down syndrome (DS) subjects. For this reason, targeting mitochondrial key genes, such as PGC-1α/PPARGC1A, is emerging as a good therapeutic approach to attenuate cognitive disability in DS. After demonstrating the efficacy of the biguanide metformin (a PGC-1α activator) in a cell model of DS, we extended the study to other molecules that regulate the PGC-1α pathway acting on PPAR genes. We, therefore, treated trisomic fetal fibroblasts with different doses of pioglitazone (PGZ) and evaluated the effects on mitochondrial dynamics and function. Treatment with PGZ significantly increased mRNA and protein levels of PGC-1α. Mitochondrial network was fully restored by PGZ administration affecting the fission-fusion mitochondrial machinery. Specifically, optic atrophy 1 (OPA1) and mitofusin 1 (MFN1) were upregulated while dynamin-related protein 1 (DRP1) was downregulated. These effects, together with a significant increase of basal ATP content and oxygen consumption rate, and a significant decrease of reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in trisomic cells. In conclusion, we demonstrate that PGZ is able to improve mitochondrial phenotype even at low concentrations (0.5 µM). We also speculate that a combination of drugs that target mitochondrial function might be advantageous, offering potentially higher efficacy and lower individual drug dosage.

9.
Med Sci (Basel) ; 7(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818867

ABSTRACT

We have carried out a retrospective study of chromosome anomalies associated with increased nuchal translucency (NT) in order to compare yield rates of karyotype, chromosome microarray analysis (CMA), and non-invasive prenatal testing (NIPT) in this condition. Presenting with increased NT or cystic hygroma ≥3.5 mm as an isolated sign, 249 fetuses underwent karyotype and/or CMA from 11 to 18 gestational weeks. Karyotype and fluorescence in situ hybridization (FISH) analyses detected 103 chromosomal anomalies including 95 aneuploidies and eight chromosomal rearrangements or derivatives. Further, seven pathogenic copy number variants (CNV), five likely pathogenic CNVs, and 15 variants of unknown significance (VOUS) were detected by CMA in fetuses with normal karyotype. Genetic testing is now facing new challenges due to results with uncertain clinical impacts. Additional investigations will be necessary to interpret these findings. More than 15% of the anomalies that we have diagnosed with invasive techniques could not be detected by NIPT. It is therefore definitely not recommended in the case of ultrasound anomalies. These results, while corroborating the use of CMA in fetuses with increased NT as a second tier after rapid aneuploidy testing, do not suggest a dismissal of karyotype analysis.

10.
Mol Med ; 24(1): 2, 2018 03 15.
Article in English | MEDLINE | ID: mdl-30134785

ABSTRACT

Trisomy of chromosome 21 (TS21) is the most common autosomal aneuploidy compatible with postnatal survival with a prevalence of 1 in 700 newborns. Its phenotype is highly complex with constant features, such as mental retardation, dysmorphic traits and hypotonia, and variable features including heart defects, susceptibility to Alzheimer's disease (AD), type 2 diabetes, obesity and immune disorders. Overexpression of genes on chromosome-21 (Hsa21) is responsible for the pathogenesis of Down syndrome (DS) phenotypic features either in a direct or in an indirect manner since many Hsa21 genes can affect the expression of other genes mapping to different chromosomes. Many of these genes are involved in mitochondrial function and energy conversion, and play a central role in the mitochondrial dysfunction and chronic oxidative stress, consistently observed in DS subjects.Recent studies highlight the deep interconnections between mitochondrial dysfunction and DS phenotype. In this short review we first provide a basic overview of mitochondrial phenotype in DS cells and tissues. We then discuss how specific Hsa21 genes may be involved in determining the disruption of mitochondrial DS phenotype and biogenesis. Finally we briefly focus on drugs that affect mitochondrial function and mitochondrial network suggesting possible therapeutic approaches to improve and/or prevent some aspects of the DS phenotype.


Subject(s)
Down Syndrome/metabolism , Mitochondria/metabolism , Animals , Down Syndrome/genetics , Humans
11.
Clin Case Rep ; 6(4): 592-595, 2018 04.
Article in English | MEDLINE | ID: mdl-29636920

ABSTRACT

A prenatal case presenting with congenital diaphragmatic hernia (CDH) and distal 16p11.2 microdeletion suggests two possible causative hypotheses: (1) a functional effect of chromatin loopings between the distal and the proximal 16p11.2 microdeletion traits, associated with CHD; (2) a possible role of ATP2A1, a deleted gene involved in diaphragm development.

12.
Int J Genomics ; 2017: 8737649, 2017.
Article in English | MEDLINE | ID: mdl-29057256

ABSTRACT

Dosage-dependent upregulation of most of chromosome 21 (Hsa21) genes has been demonstrated in heart tissues of fetuses with Down syndrome (DS). Also miRNAs might play important roles in the cardiac phenotype as they are highly expressed in the heart and regulate cardiac development. Five Hsa21 miRNAs have been well studied in the past: miR-99a-5p, miR-125b-2-5p, let-7c-5p, miR-155-5p, and miR-802-5p but few information is available about their expression in trisomic tissues. In this study, we evaluated the expression of these miRNAs in heart tissues from DS fetuses, showing that miR-99a-5p, miR-155-5p, and let-7c-5p were overexpressed in trisomic hearts. To investigate their role, predicted targets were obtained from different databases and cross-validated using the gene expression profiling dataset we previously generated for fetal hearts. Eighty-five targets of let-7c-5p, 33 of miR-155-5p, and 10 of miR-99a-5p were expressed in fetal heart and downregulated in trisomic hearts. As nuclear encoded mitochondrial genes were found downregulated in trisomic hearts and mitochondrial dysfunction is a hallmark of DS phenotypes, we put special attention to let-7c-5p and miR-155-5p targets downregulated in DS fetal hearts and involved in mitochondrial function. The let-7c-5p predicted target SLC25A4/ANT1 was identified as a possible candidate for both mitochondrial and cardiac anomalies.

13.
Hum Mol Genet ; 26(6): 1056-1069, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28087733

ABSTRACT

Alterations in mitochondrial activity and morphology have been demonstrated in human cells and tissues from individuals with Down syndrome (DS), as well as in DS mouse models. An impaired activity of the transcriptional coactivator PGC-1α/PPARGC1A due to the overexpression of chromosome 21 genes, such as NRIP1/RIP140, has emerged as an underlying cause of mitochondrial dysfunction in DS. We tested the hypothesis that the activation of the PGC-1α pathway might indeed reverse this mitochondrial dysfunction. To this end, we investigated the effects of metformin, a PGC-1α-activating drug, on mitochondrial morphology and function in DS foetal fibroblasts. Metformin induced both the expression of PGC-1α and an augmentation of its activity, as demonstrated by the increased expression of target genes, strongly promoting mitochondrial biogenesis. Furthermore, metformin enhanced oxygen consumption, ATP production, and overall mitochondrial activity. Most interestingly, this treatment reversed the fragmentation of mitochondria observed in DS and induced the formation of a mitochondrial network with a branched and elongated tubular morphology. Concomitantly, cristae remodelling occurred and the alterations observed by electron microscopy were significantly reduced. We finally demonstrated that the expression of genes of the fission/fusion machinery, namely OPA1 and MFN2, was reduced in trisomic cells and increased by metformin treatment. These results indicate that metformin promotes the formation of a mitochondrial network and corrects the mitochondrial dysfunction in DS cells. We speculate that alterations in the mitochondrial dynamics can be relevant in the pathogenesis of DS and that metformin can efficiently counteract these alterations, thus exerting protective effects against DS-associated pathologies.


Subject(s)
Down Syndrome/genetics , Metformin/administration & dosage , Mitochondria/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Adenosine Triphosphate/biosynthesis , Animals , Disease Models, Animal , Down Syndrome/drug therapy , Down Syndrome/pathology , Fibroblasts/metabolism , GTP Phosphohydrolases/biosynthesis , Humans , Mice , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Oxygen Consumption/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis
14.
J Matern Fetal Neonatal Med ; 30(6): 710-716, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27226231

ABSTRACT

OBJECTIVE: The aim of this study was to validate noninvasive prenatal testing (NIPT) for fetal aneuploidies by whole-genome massively parallel sequencing (MPS). METHODS: MPS was performed on cell-free DNA (cfDNA) isolated from maternal plasma in two groups: a first set of 186 euploid samples and a second set of 195 samples enriched of aneuploid cases (n = 69); digital PCR for fetal fraction (FF) assessment was performed on 178/381 samples. Cases with <10 × 106 reads (n = 54) were excluded for downstream data analysis. Follow-up data (invasive testing results or neonatal information) were available for all samples. Performances in terms of specificity/sensitivity and Z-score distributions were evaluated. RESULTS: All positive samples for trisomy 21 (T21) (n = 43), trisomy 18 (T18) (n = 6) and trisomy 13 (T13) (n = 7) were correctly identified (sensitivity: 99.9%); 5 false positive results were reported: 3 for T21 (specificity = 98.9%) and 2 for T13 (specificity = 99.4%). Besides FF, total cfDNA concentration seems another important parameter for MPS, since it influences the number of reads. CONCLUSIONS: The overall test accuracy allowed us introducing NIPT for T21, T18 and T13 as a clinical service for pregnant women after 10 + 4 weeks of gestation. Sex chromosome aneuploidy assessment needs further validation due to the limited number of aneuploid cases in this study.


Subject(s)
Aneuploidy , DNA/blood , Down Syndrome/blood , High-Throughput Nucleotide Sequencing/methods , Prenatal Diagnosis/methods , Cell-Free System , Cohort Studies , Female , Humans , Infant, Newborn , Male , Pregnancy , Pregnancy Complications/blood , Public Health , Sensitivity and Specificity , Statistics, Nonparametric
15.
Mol Cytogenet ; 8: 96, 2015.
Article in English | MEDLINE | ID: mdl-26689541

ABSTRACT

BACKGROUND: The chromothripsis is a biological phenomenon, first observed in tumors and then rapidly described in congenital disorders. The principle of the chromothripsis process is the occurrence of a local shattering to pieces and rebuilding of chromosomes in a random order. Congenital chromothripsis rearrangements often involve reciprocal rearrangements on multiple chromosomes and have been described as cause of contiguous gene syndromes. We hypothesize that chromothripsis could be responsible for known 9q21.13 microdeletion syndrome, causing a composite phenotype with additional features. CASE PRESENTATION: The case reported is a 16- years-old female with a complex genomic rearrangement of chromosome 9 including the critical region of 9q21.13 microdeletion syndrome. The patient presents with platelet disorder and thyroid dysfunction in addition to the classical neurobehavioral phenotype of the syndrome. CONCLUSIONS: The presence of multiple rearrangements on the same chromosome 9 and the rebuilding of chromosome in a random order suggested that the rearrangement could origin from an event of chromthripsis. To our knowledge this is the first report of congenital chromothripsis involving chromosome 9. Furthermore this is the only case of 9q21.13 microdeletion syndrome due to chromothripsis.

16.
Mol Cytogenet ; 8: 50, 2015.
Article in English | MEDLINE | ID: mdl-26175800

ABSTRACT

BACKGROUND: Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea), a decrease in the initial primordial follicle number, high follicle-stimulating hormone (FSH) levels and hypoestrogenism. Although the etiology of a majority of POI cases is not yet identified, several data suggest that POI has a strong genetic component. Conventional cytogenetic and molecular analyses have identified regions of the X chromosome that are associated with ovarian function, as well as POI candidate genes, such as FMR1 and DIAPH2. Here we describe a 10.5-year-old girl presenting with high FSH and luteinizing hormone (LH) levels, pathologic GH stimulation arginine and clonidine tests, short stature, pterygium, ovarian dysgenesis, hirsutism and POI. RESULTS: Cytogenetic analysis demonstrated a balanced reciprocal translocation between the q arms of chromosomes X and 1, with breakpoints falling in Xq21 and 1q41 bands. Molecular studies did not unravel any chromosome microdeletion/microduplication, and no XIST-mediated inactivation was found on the derivative chromosome 1. Interestingly, through immunofluorescence assays, we found that part of the Xq21q22 trait, translocated to chromosome 1q41, was late replicating and therefore possibly inactivated in 30 % metaphases both in lymphocytes and skin fibroblasts, in addition to a skewed 100 % inactivation of the normal X chromosome. These findings suggest that a dysregulation of gene expression might occur in this region. Two genes mapping to the Xq translocated region, namely DIAPH2 and FMR1, were found overexpressed if compared with controls. CONCLUSIONS: We report a case in which gonadal dysgenesis and POI are associated with over-expression of DIAPH2 gene and of FMR1 gene in wild type form. We hypothesize that this over-expression is possibly due to a phenomenon known as "chromosomal position effect", which accounts for gene expression variations depending on their localization within the nucleus. For the same effect a double mosaic inactivation of genes mapping to the Xq21-q22 region, demonstrated by immunofluorescence assays, may be the cause of a functional Xq partial monosomy leading to most Turner traits of the proband's phenotype.

17.
Hum Mol Genet ; 23(16): 4406-19, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24698981

ABSTRACT

Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Chromosomes, Human, Pair 21 , Down Syndrome/metabolism , Mitochondria/metabolism , Myocardium/metabolism , Nuclear Proteins/metabolism , Trisomy , Aborted Fetus/cytology , Adenosine Triphosphate/metabolism , Calcium/metabolism , Cells, Cultured , Fibroblasts , Genes, Mitochondrial/physiology , Humans , Nuclear Receptor Interacting Protein 1 , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA, Small Interfering/metabolism , Transcription Factors/metabolism
18.
Mol Cytogenet ; 6(1): 29, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23915422

ABSTRACT

BACKGROUND: Partial monosomies of chromosome 16q are rare and overlapping effects from complex chromosomal rearrangements often hamper genotype-phenotype correlations for such imbalances. Here, we report the clinical features of an isolated partial monosomy 16q21q22.1 in a boy with a complex de novo rearrangement possibly resulting from a chromothripsis event. RESULTS: The patient presented with low birth weight, microcephaly, developmental delay, facial dysmorphisms, short stature, dysmorphic ears and cardiopathy. Standard and molecular cytogenetics showed a complex rearrangement characterised by a pericentromeric inversion in one of chromosomes 12 and an inverted insertional translocation of the 12q14q21.1 region, from the rearranged chromosome 12, into the q21q22.1 tract of a chromosome 16. Array-CGH analysis unravelled a partial 16q21q22.1 monosomy, localised in the rearranged chromosome 16. CONCLUSIONS: The comparison of the present case to other 16q21q22 monosomies contributed to narrow down the critical region for cardiac anomalies in the 16q22 deletion syndrome. However, more cases, well characterised both for phenotypic signs and genomic details, are needed to further restrict candidate regions for phenotypic signs in 16q deletions. The present case also provided evidence that a very complex rearrangement, possibly caused by a chromothripsis event, might be hidden behind a classical phenotype that is specific for a syndrome.

19.
Hum Mol Genet ; 22(6): 1218-32, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23257287

ABSTRACT

Trisomy of chromosome 21 is associated to congenital heart defects in ∼50% of affected newborns. Transcriptome analysis of hearts from trisomic human foeti demonstrated that genes involved in mitochondrial function are globally downregulated with respect to controls, suggesting an impairment of mitochondrial function. We investigated here the properties of mitochondria in fibroblasts from trisomic foeti with and without cardiac defects. Together with the upregulation of Hsa21 genes and the downregulation of nuclear encoded mitochondrial genes, an abnormal mitochondrial cristae morphology was observed in trisomic samples. Furthermore, impairment of mitochondrial respiratory activity, specific inhibition of complex I, enhanced reactive oxygen species production and increased levels of intra-mitochondrial calcium were demonstrated. Seemingly, mitochondrial dysfunction was more severe in fibroblasts from cardiopathic trisomic foeti that presented a more pronounced pro-oxidative state. The data suggest that an altered bioenergetic background in trisomy 21 foeti might be among the factors responsible for a more severe phenotype. Since the mitochondrial functional alterations might be rescued following pharmacological treatments, these results are of interest in the light of potential therapeutic interventions.


Subject(s)
Aborted Fetus/metabolism , Down Syndrome/metabolism , Fibroblasts/metabolism , Heart Defects, Congenital/metabolism , Mitochondria/metabolism , Down Syndrome/complications , Down Syndrome/embryology , Down Syndrome/genetics , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/embryology , Heart Defects, Congenital/genetics , Humans , Male , Mitochondria/genetics , Oxidation-Reduction , Oxidative Stress , Pregnancy , Reactive Oxygen Species/metabolism , Trisomy
20.
Am J Med Genet A ; 158A(4): 832-5, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22407589

ABSTRACT

Haploinsufficiency of a region located distal to 10p14 designated HDR1, is responsible for hypoparathyroidism, sensorineural deafness, and renal anomalies (HDR syndrome). Haploinsufficiency of a more proximal region, located on 10p13-10p14, designated as DGCR2 is associated with congenital heart defects and thymus hypoplasia/aplasia or T cell defect. We describe a patient showing facial dysmorphisms, delayed psychomotor development and bilateral sensorineural hearing loss and carrying a 10p14 deletion, the smallest deletion found in the literature so far. Our patient, carrying a partial deletion of the DGCR2 region and of the HDR1 region, including the GATA3 gene, showed, unexpectedly, only few of the clinical features of DiGeorge 2 syndrome (psychomotor retardation, palpebral ptosis, epicanthic folds, anteverted nares, cryptorchidism, hand/foot abnormalities) and did not show other typical signs, such as cardiac defect, cleft palate, and abnormal T cell levels. Of the three characteristic features of the HDR syndrome, our patient had only sensorineural deafness. On the basis of the revision of the other cases reported in the literature with a deletion including the 10p14 region, we suggest that GATA3 haploinsufficiency, although not recorded for each patient, is responsible for deafness. The present case shows that even this small 10p deletion is responsible for a specific phenotype. We also underline the importance of CGH-array, in order to obtain a more precise physical mapping of the 10p deletions and an accurate genotype-phenotype correlation.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Hearing Loss, Sensorineural/genetics , Hypoparathyroidism/genetics , Nephrosis/genetics , Sequence Deletion , Child, Preschool , DiGeorge Syndrome/genetics , GATA3 Transcription Factor/genetics , Genetic Association Studies , Haploinsufficiency , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/physiopathology , Humans , Hypoparathyroidism/pathology , Hypoparathyroidism/physiopathology , Male , Nephrosis/pathology , Nephrosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...