Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
New Phytol ; 241(1): 166-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37565540

ABSTRACT

Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Histones/metabolism , Seedlings , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Gene Expression Regulation, Plant
3.
PLoS Genet ; 19(5): e1010766, 2023 05.
Article in English | MEDLINE | ID: mdl-37186640

ABSTRACT

The floral transition occurs at the shoot apical meristem (SAM) in response to favourable external and internal signals. Among these signals, variations in daylength (photoperiod) act as robust seasonal cues to activate flowering. In Arabidopsis, long-day photoperiods stimulate production in the leaf vasculature of a systemic florigenic signal that is translocated to the SAM. According to the current model, FLOWERING LOCUS T (FT), the main Arabidopsis florigen, causes transcriptional reprogramming at the SAM, so that lateral primordia eventually acquire floral identity. FT functions as a transcriptional coregulator with the bZIP transcription factor FD, which binds DNA at specific promoters. FD can also interact with TERMINAL FLOWER 1 (TFL1), a protein related to FT that acts as a floral repressor. Thus, the balance between FT-TFL1 at the SAM influences the expression levels of floral genes targeted by FD. Here, we show that the FD-related bZIP transcription factor AREB3, which was previously studied in the context of phytohormone abscisic acid signalling, is expressed at the SAM in a spatio-temporal pattern that strongly overlaps with FD and contributes to FT signalling. Mutant analyses demonstrate that AREB3 relays FT signals redundantly with FD, and the presence of a conserved carboxy-terminal SAP motif is required for downstream signalling. AREB3 shows unique and common patterns of expression with FD, and AREB3 expression levels are negatively regulated by FD thus forming a compensatory feedback loop. Mutations in another bZIP, FDP, further aggravate the late flowering phenotypes of fd areb3 mutants. Therefore, multiple florigen-interacting bZIP transcription factors have redundant functions in flowering at the SAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Florigen/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Meristem/metabolism
4.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36018271

ABSTRACT

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Subject(s)
Carbon Dioxide , Climate Change , Stress, Physiological , Carbon Dioxide/metabolism , Plant Transpiration/physiology , Plants/metabolism , Water/metabolism
5.
Plant Cell Physiol ; 63(9): 1285-1297, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35859344

ABSTRACT

Transcriptional reprogramming plays a key role in drought stress responses, preceding the onset of morphological and physiological acclimation. The best-characterized signal regulating gene expression in response to drought is the phytohormone abscisic acid (ABA). ABA-regulated gene expression, biosynthesis and signaling are highly organized in a diurnal cycle, so that ABA-regulated physiological traits occur at the appropriate time of day. The mechanisms that underpin such diel oscillations in ABA signals are poorly characterized. Here we uncover GIGANTEA (GI) as a key gatekeeper of ABA-regulated transcriptional and physiological responses. Time-resolved gene expression profiling by RNA sequencing under different irrigation scenarios indicates that gi mutants produce an exaggerated ABA response, despite accumulating wild-type levels of ABA. Comparisons with ABA-deficient mutants confirm the role of GI in controlling ABA-regulated genes, and the analysis of leaf temperature, a read-out for transpiration, supports a role for GI in the control of ABA-regulated physiological processes. Promoter regions of GI/ABA-regulated transcripts are directly targeted by different classes of transcription factors (TFs), especially PHYTOCHROME-INTERACTING FACTOR and -BINDING FACTOR, together with GI itself. We propose a model whereby diel changes in GI control oscillations in ABA responses. Peak GI accumulation at midday contributes to establishing a phase of reduced ABA sensitivity and related physiological responses, by gating DNA binding or function of different classes of TFs that cooperate or compete with GI at target regions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Stress, Physiological/genetics
6.
Sci Rep ; 12(1): 533, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017563

ABSTRACT

Stomata are epidermal pores formed by pairs of specialized guard cells, which regulate gas exchanges between the plant and the atmosphere. Modulation of transcription has emerged as an important level of regulation of stomatal activity. The AtMYB60 transcription factor was previously identified as a positive regulator of stomatal opening, although the details of its function remain unknown. Here, we propose a role for AtMYB60 as a negative modulator of oxylipins synthesis in stomata. The atmyb60-1 mutant shows reduced stomatal opening and accumulates increased levels of 12-oxo-phytodienoic acid (12-OPDA), jasmonic acid (JA) and jasmonoyl-L-isoleucine (JA-Ile) in guard cells. We provide evidence that 12-OPDA triggers stomatal closure independently of JA and cooperatively with abscisic acid (ABA) in atmyb60-1. Our study highlights the relevance of oxylipins metabolism in stomatal regulation and indicates AtMYB60 as transcriptional integrator of ABA and oxylipins responses in guard cells.


Subject(s)
Oxylipins
7.
Plant Physiol Biochem ; 167: 174-184, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34365288

ABSTRACT

Ultraviolet-B (UV-B) radiation as an environmental potential elicitor induces the synthesis of plant secondary metabolites. The effects of UV-B radiation on photosynthetic pigments and dry weight, biochemical and molecular features of old and young leaves of Salvia verticillata were investigated. Plants were exposed to 10.97 kJ m-2 day-1 of biologically effective UV-B radiation for up to 10 days. The sampling process was performed in four steps: 1, 5, 10, and 13 days (recovery time) after the start of irradiation. As a result of plant investment in primary and secondary metabolism, the production of phenolic compounds increased, while chlorophyll levels and leaf dry weight (%) declined. Under long-term UV-B exposure, young leaves exhibited the most significant reduction in chlorophyll a and b content and leaf dry weight. The highest level of total phenol (1.34-fold) and flavonoid concentration (2-fold) relative to the control was observed on the 5th day and recovery time, respectively. Young leaves demonstrated the highest amount of phenolic acids in recovery time. Young leaves on the 5th day of the experiment exerted the highest level of antioxidant activity when compared to the control. A positive correlation was observed between antioxidant activity and the amount of phenolic compounds. Regarding the expression of phenylpropanoid pathway genes, UV-B enhanced the expression of phenylalanine ammonia-lyase, tyrosine aminotransferase, and rosmarinic acid synthase with the highest level in young leaves on the 10th day. Overall, young leaves of S. verticillata indicated higher sensitivity to UV-B radiation and developed more tangible reactions to such radiation.


Subject(s)
Salvia , Antioxidants , Chlorophyll A , Phenols , Plant Leaves , Ultraviolet Rays
8.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353251

ABSTRACT

Plants can react to drought stress by anticipating flowering, an adaptive strategy for plant survival in dry climates known as drought escape (DE). In Arabidopsis, the study of DE brought to surface the involvement of abscisic acid (ABA) in controlling the floral transition. A central question concerns how and in what spatial context can ABA signals affect the floral network. In the leaf, ABA signaling affects flowering genes responsible for the production of the main florigen FLOWERING LOCUS T (FT). At the shoot apex, FD and FD-like transcription factors interact with FT and FT-like proteins to regulate ABA responses. This knowledge will help separate general and specific roles of ABA signaling with potential benefits to both biology and agriculture.


Subject(s)
Abscisic Acid/pharmacology , Flowers/growth & development , Gene Expression Regulation, Plant/drug effects , Magnoliopsida/growth & development , Plant Proteins/metabolism , Flowers/drug effects , Flowers/metabolism , Magnoliopsida/drug effects , Magnoliopsida/metabolism , Plant Proteins/genetics
9.
PLoS Genet ; 16(7): e1008882, 2020 07.
Article in English | MEDLINE | ID: mdl-32673315

ABSTRACT

Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.


Subject(s)
Adaptation, Physiological/genetics , Florigen/metabolism , Plant Proteins/genetics , Zea mays/genetics , Acclimatization/genetics , Cold Temperature , Flowers/genetics , Flowers/growth & development , Humans , Photoperiod , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Zea mays/growth & development
11.
Dev Biol ; 430(2): 288-301, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28351648

ABSTRACT

The transition to flowering marks a key adaptive developmental switch in plants which impacts on their survival and fitness. Different signaling pathways control the floral transition, conveying both endogenous and environmental cues. These cues are often relayed and/or modulated by different hormones, which might confer additional developmental flexibility to the floral process in the face of varying conditions. Among the different hormonal pathways, the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting modules for different signaling proteins. In this review, I will highlight the role of DELLAs as spatial and temporal modulators of different consolidated floral pathways. Next, building on recent data, I will provide an update on some emerging themes connecting other hormone signaling cascades to flowering time control. I will finally provide examples for some established as well as potential cross-regulatory mechanisms between hormonal pathways mediated by the DELLA proteins.


Subject(s)
Arabidopsis/growth & development , Flowers/growth & development , Plant Growth Regulators/physiology , Adaptation, Physiological , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/physiology , Gene Expression Regulation, Plant , Gibberellins/physiology , Meristem/physiology , Photoperiod , Plant Shoots/growth & development , Temperature
13.
Plant Reprod ; 29(4): 287-290, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27761651

ABSTRACT

KEY MESSAGE: SUMOylation and anther growth. During fertilization, stamen elongation needs to be synchronized with pistil growth. The phytohormone gibberellic acid (GA) promotes stamen growth by stimulating the degradation of growth repressing DELLA proteins. DELLA accumulation is negatively regulated by GAs through the ubiquitin-proteasome system. In Arabidopsis thaliana, a proportion of DELLAs is also conjugated to the small ubiquitin-like modifier (SUMO) protein, which stabilizes DELLAs. Increased DELLA levels occur in the SUMO protease-deficient OVERLY TOLERANT TO SALT 1 and 2 (ots1 ots2) double mutants, especially under salt stress conditions. Here, we show that OTS genes play a redundant role in the control of plant fertility under non-stress conditions. Mutants of ots1 ots2 display reduced fertility compared with the wild type, owing to reduced stamen elongation. Stamen growth, pollination rate and seed production are restored in ots1 ots2 della mutants, thus linking OTS1 function to the control of DELLA activity in the context of filament elongation. OTS levels appear to be developmentally regulated as OTS1/2 transcript upregulation during stamen development overlaps with GAs accumulations. We propose that OTS genes enable synchronization of stamen development by facilitating DELLA degradation at a specific developmental stage.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cysteine Endopeptidases/metabolism , Cytoskeleton/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cysteine Endopeptidases/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gibberellins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Sumoylation , Ubiquitin/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
14.
J Exp Bot ; 67(22): 6309-6322, 2016 12.
Article in English | MEDLINE | ID: mdl-27733440

ABSTRACT

One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regulation of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS (CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that allows plants to co-ordinate the onset of the reproductive phase according to the available water resources.


Subject(s)
Abscisic Acid/physiology , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Plant Growth Regulators/physiology , Arabidopsis/growth & development , Dehydration , Flowers/growth & development , Gene Expression Regulation, Plant/physiology , MADS Domain Proteins/physiology , Signal Transduction/physiology , Up-Regulation
15.
BMC Plant Biol ; 16(1): 172, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27484174

ABSTRACT

BACKGROUND: Guard cells (GCs) are specialised cells within the plant epidermis which form stomatal pores, through which gas exchange can occur. The GCs derive through a specialised lineage of cell divisions which is specified by the transcription factor SPEECHLESS (SPCH), the expression of which can be detected in undifferentiated epidermal cells prior to asymmetric division. Other transcription factors may act before GC specification and be required for correct GC patterning. Previously, the DOF transcription factor STOMATAL CARPENTER 1 (SCAP1) was shown to be involved in GC function, by activating a set of GC-specific genes required for GC maturation and activity. It is thus far unknown whether SCAP1 can also affect stomatal development. RESULTS: Here we show that SCAP1 expression can also be observed in young leaf primordia, before any GC differentiation occurs. The study of transgenic plants carrying a proSCAP1:GUS-GFP transcriptional fusion, coupled with qPCR analyses, indicate that SCAP1 expression peaks in a temporal window which is coincident with expression of stomatal patterning genes. Independent scap1 loss-of-function mutants have a reduced number of GCs whilst SCAP1 over expression lines have an increased number of GCs, in addition to altered GC distribution and spacing patterns. The study of early markers for stomatal cell lineage in a background carrying gain-of-function alleles of SCAP1 revealed that, compared to the wild type, an increased number of protodermal cells are recruited in the GC lineage, which is reflected in an increased number of meristemoids. CONCLUSIONS: Our results suggest an early role for SCAP1 in GC differentiation. We propose that a function of SCAP1 is to integrate different aspects of GC biology including specification, spacing, maturation and function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Plant Cells/metabolism , Plant Stomata/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Body Patterning , Cell Differentiation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Plant Stomata/cytology , Plant Stomata/genetics , Plant Stomata/metabolism
16.
J Exp Bot ; 67(1): 353-63, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26494731

ABSTRACT

Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cysteine Endopeptidases/genetics , Gene Expression Regulation, Plant , Pseudomonas syringae/physiology , Salicylic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Cysteine Endopeptidases/metabolism , Plant Diseases/immunology , Plant Immunity , Signal Transduction
17.
J Exp Bot ; 66(15): 4769-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26019254

ABSTRACT

Models for the control of above-ground plant architectures show how meristems can be programmed to be either shoots or flowers. Molecular, genetic, transgenic, and mathematical studies have greatly refined these models, suggesting that the phase of the shoot reflects different genes contributing to its repression of flowering, its vegetativeness ('veg'), before activators promote flower development. Key elements of how the repressor of flowering and shoot meristem gene TFL1 acts have now been tested, by changing its spatiotemporal pattern. It is shown that TFL1 can act outside of its normal expression domain in leaf primordia or floral meristems to repress flower identity. These data show how the timing and spatial pattern of TFL1 expression affect overall plant architecture. This reveals that the underlying pattern of TFL1 interactors is complex and that they may be spatially more widespread than TFL1 itself, which is confined to shoots. However, the data show that while TFL1 and floral genes can both act and compete in the same meristem, it appears that the main shoot meristem is more sensitive to TFL1 rather than floral genes. This spatial analysis therefore reveals how a difference in response helps maintain the 'veg' state of the shoot meristem.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental , Meristem/genetics , Meristem/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development
18.
Plant Signal Behav ; 10(2): e987528, 2015.
Article in English | MEDLINE | ID: mdl-25761145

ABSTRACT

Plants survive adversity by modulating their growth in response to changing environmental signals. The phytohormone Gibberellic acid (GA) plays a central role in regulating these adaptive responses by stimulating the degradation of growth repressing DELLA proteins which accumulate during stress. The current model for GA signaling describes how this hormone binds to its receptor GID1 so promoting association of GID1 with DELLA, which then undergoes ubiquitin-mediated proteasomal degradation. Recent data revealed that conjugation of DELLAs to the Small Ubiquitin-like Modifier (SUMO) protein enables plants to modulate its abundance during environmental stress. This is achieved by SUMOylated DELLAs sequestering GID1 via its SUMO interacting motif (SIM) allowing non-SUMOylated DELLAs to accumulate leading to growth restraint under stress and potential yield loss. We demonstrate that GID1 proteins across the major cereal crops contain a functional SIM able to bind SUMO1. Site directed mutagenesis and yeast 2 hybrid experiments reveal that it is possible to disrupt the SIM-SUMO interaction motif without affecting the GA dependent DELLA-GID1 interaction and thereby uncoupling SUMO-mediated inhibition from DELLA degradation. Arabidopsis plants overexpressing a SIM mutant allele of GID1 perform better at relieving DELLA restraint than wild-type GID1. This evidence suggests that manipulating the SIM motif in the GA receptor may provide a possible route to developing stress tolerant crops plants.


Subject(s)
Crops, Agricultural/metabolism , Edible Grain/metabolism , Gibberellins/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Blotting, Western , Conserved Sequence , Molecular Sequence Data , Mutant Proteins/metabolism , Protein Binding/drug effects , Receptors, Cell Surface/chemistry , Small Ubiquitin-Related Modifier Proteins/chemistry , Two-Hybrid System Techniques
19.
Dev Cell ; 28(1): 102-10, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24434138

ABSTRACT

Plants survive adverse conditions by modulating their growth in response to a changing environment. Gibberellins (GAs) play a key role in these adaptive responses by stimulating the degradation of growth-repressing DELLA proteins. GA binding to its receptor GID1 enables association of GID1 with DELLAs. This leads to the ubiquitin-mediated proteasomal degradation of DELLAs and consequently growth promotion. We report that DELLA-dependent growth control can be regulated independently of GA. We demonstrate that when a proportion of DELLAs is conjugated to the Small Ubiquitin-like Modifier (SUMO) protein, the extent of conjugation increases during stress. We identify a SUMO-interacting motif in GID1 and demonstrate that SUMO-conjugated DELLA binds to this motif in a GA-independent manner. The consequent sequestration of GID1 by SUMO-conjugated DELLAs leads to an accumulation of non-SUMOylated DELLAs, resulting in beneficial growth restraint during stress. We conclude that plants have developed a GA-independent mechanism to control growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gibberellins/metabolism , Repressor Proteins/metabolism , SUMO-1 Protein/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Binding Sites , Molecular Sequence Data , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , SUMO-1 Protein/genetics , Stress, Physiological
20.
Plant Signal Behav ; 9(7): e29036, 2014.
Article in English | MEDLINE | ID: mdl-25763486

ABSTRACT

Plants maximize their chances to survive adversities by reprogramming their development according to environmental conditions. Adaptive variations in the timing to flowering reflect the need for plants to set seeds under the most favorable conditions. A complex network of genetic pathways allows plants to detect and integrate external (e.g., photoperiod and temperature) and/or internal (e.g., age) information to initiate the floral transition. Furthermore different types of environmental stresses play an important role in the floral transition. The emerging picture is that stress conditions often affect flowering through modulation of the photoperiodic pathway. In this review we will discuss different modes of cross talk between stress signaling and photoperiodic flowering, highlighting the central role of the florigen genes in this process.


Subject(s)
Arabidopsis/metabolism , Florigen/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Photoperiod , Plant Growth Regulators/metabolism , Stress, Physiological , Arabidopsis/genetics , Environment , Genes, Plant , Plant Growth Regulators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL