Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Cancer Res ; 83(1): 130-140, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36264168

ABSTRACT

Deregulation of neuroblastoma-derived myc (N-myc) is a leading cause of malignant brain tumors in children. To target N-myc-driven medulloblastoma, most research has focused on identifying genomic alterations or on the analysis of the medulloblastoma transcriptome. Here, we have broadly characterized the translatome of medulloblastoma and shown that N-myc unexpectedly drives selective translation of transcripts that promote protein homeostasis. Cancer cells are constantly exposed to proteotoxic stress associated with alterations in protein production or folding. It remains poorly understood how cancers cope with proteotoxic stress to promote their growth. Here, our data revealed that N-myc regulates the expression of specific components (∼5%) of the protein folding machinery at the translational level through the major cap binding protein, eukaryotic initiation factor eIF4E. Reducing eIF4E levels in mouse models of medulloblastoma blocked tumorigenesis. Importantly, targeting Hsp70, a protein folding chaperone translationally regulated by N-myc, suppressed tumor growth in mouse and human medulloblastoma xenograft models. These findings reveal a previously hidden molecular program that promotes medulloblastoma formation and identify new therapies that may have impact in the clinic. SIGNIFICANCE: Translatome analysis in medulloblastoma shows that N-myc drives selective translation of transcripts that promote protein homeostasis and that represent new therapeutic vulnerabilities.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Mice , Animals , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Medulloblastoma/pathology , Eukaryotic Initiation Factor-4E/genetics , Disease Models, Animal , Cerebellar Neoplasms/pathology
3.
Front Cell Neurosci ; 16: 1025429, 2022.
Article in English | MEDLINE | ID: mdl-36439201

ABSTRACT

Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.

4.
Sensors (Basel) ; 22(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36433499

ABSTRACT

In this paper, new suspended-membrane double-ohmic-contact RF-MEMS switch configurations are proposed. Double-diagonal (DDG) beam suspensions, with either two or three anchoring points, are designed and optimized to minimize membrane deformation due to residual fabrication stresses, thus exhibiting smaller mechanical deformation and a higher stiffness with more release force than previously designed single diagonal beam suspensions. The two-anchor DDGs are designed in two different orientations, in-line and 90°-rotated. The membrane may include a window to minimize the coupling to the lower electrode. The devices are integrated in a coplanar-waveguide transmission structure and fabricated using an eight-mask surface-micro-machining process on high-resistivity silicon, with dielectric-free actuation electrodes, and including glass protective caps. The RF-MEMS switch behavior is assessed from measurements of the device S parameters in ON and OFF states. The fabricated devices feature a measured pull-in voltage of 76.5 V/60 V for the windowed/not-windowed two-anchor DDG membranes, and 54 V/49.5 V for the windowed/not-windowed three-anchor DDG membranes, with a good agreement with mechanical 3D simulations. The measured ON-state insertion loss is better than 0.7 dB/0.8 dB and the isolation in the OFF state is better than 40 dB/31 dB up to 20 GHz for the in-line/90°-rotated devices, also in good agreement with 2.5D electromagnetic simulations.

5.
Brain Sci ; 11(7)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34356178

ABSTRACT

Defining the relationship between vascular development and the expression of hypoxia-inducible factors (Hifs) and vascular endothelial growth factor (Vegf) in the auditory brainstem is important to understand how tissue hypoxia caused by oxygen shortage contributes to sensory deficits in neonates. In this study, we used histology, molecular labeling, confocal microscopy and 3D image processing methods to test the hypothesis that significant maturation of the vascular bed in the medial nucleus of the trapezoid body (MNTB) occurs during the postnatal period that precedes hearing onset. Isolectin-B4 histochemistry experiments suggested that the MNTB vasculature becomes more elaborate between P5 and P10. When combined with a cell proliferation marker and immunohistochemistry, we found that vascular growth coincides with a switch in the localization of proliferating cells to perivascular locations, and an increase in the density of microglia within the MNTB. Furthermore, microglia were identified as perivascular cells with proliferative activity during the period of vascular maturation. Lastly, combined in situ hybridization and immunohistochemistry experiments showed distinct profiles of Hif1a and Vegf mRNA localization in microglia, astrocytes and MNTB principal neurons. These results suggest that different cells of the neuro-glio-vascular unit are likely targets of hypoxic insult in the auditory brainstem of neonate rats.

6.
Front Neurosci ; 15: 654479, 2021.
Article in English | MEDLINE | ID: mdl-33935637

ABSTRACT

In this work the impact of two widely used anesthetics on the electrical activity of auditory brainstem neurons was studied during postnatal development. Spontaneous electrical activity in neonate rats of either sex was analyzed through a ventral craniotomy in mechanically ventilated pups to carry out patch clamp and multi-electrode electrophysiology recordings in the medial region of the superior olivary complex (SOC) between birth (postnatal day 0, P0) and P12. Recordings were obtained in pups anesthetized with the injectable mix of ketamine/xylazine (K/X mix), with the volatile anesthetic isoflurane (ISO), or in pups anesthetized with K/X mix that were also exposed to ISO. The results of patch clamp recordings demonstrate for the first time that olivary and periolivary neurons in the medial region of the SOC fire bursts of action potentials. The results of multielectrode recordings suggest that the firing pattern of single units recorded in K/X mix is similar to that recorded in ISO anesthetized rat pups. Taken together, the results of this study provide a framework to use injectable and volatile anesthetics for future studies to obtain functional information on the activity of medial superior olivary neurons in vivo.

7.
Blood ; 137(5): 661-677, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33197925

ABSTRACT

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Subject(s)
Acetamides/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Isoindoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Piperidones/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Acetamides/therapeutic use , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Humans , Isoindoles/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neoplastic Stem Cells/enzymology , Nuclear Factor 45 Protein/physiology , Nuclear Factor 90 Proteins/physiology , Peptide Termination Factors/metabolism , Piperidones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Proteolysis , Small Molecule Libraries , Stress, Physiological , TOR Serine-Threonine Kinases/physiology , U937 Cells , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
8.
PLoS One ; 15(8): e0237933, 2020.
Article in English | MEDLINE | ID: mdl-32822407

ABSTRACT

Defining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams. The results show the first evidence that the transcription of genes involved in the hypoxia-sensitive pathway and neurotrophin signaling is regulated during separate sensitive periods that occur before and after hearing onset, respectively. Although the timing of ABR onset, EO, and the relative mRNA levels of genes involved in the hypoxia-sensitive pathway did not differ between pups from different LG groups, we found statistically significant increases in the relative mRNA levels of four genes involved in neurotrophin signaling in auditory brain regions from pups of different LG backgrounds. These results suggest that sensitivity to hypoxic challenge might be widespread in the auditory system of neonate rats before hearing onset, and that maternal LG may affect the transcription of genes involved in experience-dependent neuroplasticity.


Subject(s)
Behavior, Animal/physiology , Brain/growth & development , Brain/metabolism , Evoked Potentials, Auditory, Brain Stem/physiology , Grooming/physiology , Maternal Behavior/physiology , Nerve Growth Factors/metabolism , Animals , Animals, Newborn , Eye/growth & development , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hearing , Hypoxia/genetics , Hypoxia/metabolism , Nerve Growth Factors/genetics , Neuronal Plasticity/physiology , Rats , Rats, Wistar , Signal Transduction/genetics , Signal Transduction/physiology , X-Ray Microtomography
9.
Elife ; 82019 09 03.
Article in English | MEDLINE | ID: mdl-31478838

ABSTRACT

Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA (rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs are differentially regulated during the earliest cellular response to oncogenic RASG12V expression. We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a clinical perspective, we further show that human HCCs with low SNORA24 expression display increased lipid content and are associated with poor patient survival. We next asked whether ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET) analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA) selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational miscoding and stop codon readthrough frequencies. These findings highlight a role for specific snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular/pathology , Genes, Tumor Suppressor/physiology , Liver Neoplasms/pathology , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal, 18S/metabolism , RNA, Small Nuclear/physiology , ras Proteins/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/mortality , Disease Models, Animal , Female , Humans , Liver Neoplasms/mortality , Male , Mice , Middle Aged , Protein Biosynthesis , RNA, Small Nuclear/genetics , Ribosomes/metabolism , Survival Analysis , Young Adult
10.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31217330

ABSTRACT

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Subject(s)
Cochlea/physiology , Evoked Potentials, Auditory, Brain Stem , Olivary Nucleus/physiology , Synaptic Potentials , Trapezoid Body/physiology , Animals , Auditory Perception , Cochlea/growth & development , Cochlea/metabolism , Female , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Male , Mice , Motor Neurons/cytology , Motor Neurons/physiology , Olivary Nucleus/growth & development , Olivary Nucleus/metabolism , Receptors, Nicotinic/genetics , Trapezoid Body/growth & development , Trapezoid Body/metabolism
11.
J Biophotonics ; 11(12): e201800096, 2018 12.
Article in English | MEDLINE | ID: mdl-30027681

ABSTRACT

Light transmission of Laguerre-Gaussian vector vortex beams in different local regions in mouse brain tissue is investigated. Transmittance is measured in the ballistic and diffusive regions with various polarizations states and orbital angular momentums (OAM). The transmission change observed with structured light other than linear polarization is attributed to chiroptical phenomena from the chiral brain media and the handedness of the light. For instance, classically entangled beams showed higher transmittance and constant value dependency on OAM modes than linear modes did. Also, circular polarization beam transmittance showed strong increase with topical charge OAM ( ℓ), which could be attributed to chiroptical effect.


Subject(s)
Brain/cytology , Optical Phenomena , Photons , Animals , Mice
12.
J Biophotonics ; 11(1)2018 01.
Article in English | MEDLINE | ID: mdl-28464457

ABSTRACT

Time resolved spectroscopic measurements with single-photon and multi-photon excitation of native molecules were performed ex vivo on brain tissues from an Alzheimer's disease (AD) and a wild type (WT) mouse model using a streak camera. The fluorescence decay times of native NADH and FAD show a longer relaxation time in AD than in WT tissue, suggesting less non-radiative processes in AD. The longer emission time of AD may be attributed to the coupling of the key native building block molecules to the amyloid-tau and/or to the caging of the native fluorophores by the deposition of amyloid-beta or tau plaques and neurofibrillary tangles that affect the local non-radiative interactions.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Photons , Absorption, Radiation , Animals , Flavin-Adenine Dinucleotide/metabolism , Mice , NAD/metabolism , Spectrometry, Fluorescence , Time Factors
13.
J Biophotonics ; 10(12): 1756-1760, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28635151

ABSTRACT

Light transmission of Gaussian (G) and Laguerre-Gaussian (LG) vortex beams in mouse brain tissue is investigated. Transmittance is measured with different orbital angular momentums (OAM) at various tissue thicknesses. In both ballistic and diffusive regions, transmittances of G and LG beams show no significant difference. The transition point from ballistic to diffusive region for the mouse brain tissue is determined at about 480 µm. The observed transmittances of the G and LG beams show independence on OAM modes, which may be attributed to poorly understood interference effects from brain tissue.


Subject(s)
Brain/cytology , Light , Optical Phenomena , Animals , Brain/radiation effects , Mice , Normal Distribution , Scattering, Radiation
14.
Sci Rep ; 7(1): 2599, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572632

ABSTRACT

In this study, label-free fluorescence spectroscopy was used for the first time to determine spectral profiles of tryptophan, reduced nicotinamide adenine dinucleotide (NADH), and flavin denine dinucleotide (FAD) in fresh brain samples of a mouse model of Alzheimer's disease (AD). Our results showed that the emission spectral profile levels of tryptophan and NADH were higher in AD samples than normal samples. The intensity ratio of tryptophan to NADH and the change rate of fluorescence intensity with respect to wavelength also increased in AD brain. These results yield an optical method for detecting early stage of AD by comparing spectral profiles of biomolecules.


Subject(s)
Alzheimer Disease/diagnosis , Brain/metabolism , Flavin-Adenine Dinucleotide/chemistry , NAD/chemistry , Spectrometry, Fluorescence/methods , Tryptophan/chemistry , Animals , Disease Models, Animal , Early Diagnosis , Humans , Mice , Mice, Transgenic
16.
J Biophotonics ; 9(1-2): 38-43, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26556561

ABSTRACT

Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.


Subject(s)
Brain/cytology , Infrared Rays , Optical Imaging/methods , Animals , Optical Phenomena , Rats , Scattering, Radiation
17.
Wiley Interdiscip Rev RNA ; 6(2): 173-89, 2015.
Article in English | MEDLINE | ID: mdl-25363811

ABSTRACT

A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.


Subject(s)
Neoplasms/physiopathology , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , Ribosomes/physiology , Gene Expression Regulation , Humans , Protein Biosynthesis , Pseudouridine/metabolism , Ribosomes/metabolism , Uridine/metabolism
18.
J Biomed Opt ; 19(12): 126006, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25490048

ABSTRACT

The critical optical properties of a Gaussian laser beam in two-photon or multiphoton fluorescence imaging, including the beam spot size, depth of focus, and intensity profile, are investigated for spatially locating nanoscale solutes in and surrounding the microvessels of rat brain.


Subject(s)
Brain/blood supply , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence, Multiphoton/methods , Microvessels/anatomy & histology , Animals , Cerebrovascular Circulation , Female , Lasers , Rats , Rats, Sprague-Dawley
19.
J Biomed Opt ; 19(6): 066009, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24967915

ABSTRACT

Two-photon (2P) excitation of the second singlet (S2) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S2 state of Chl α enabled the imaging depth up to 450 µm through rat brain tissue.


Subject(s)
Brain/pathology , Chlorophyll/analysis , Microscopy, Fluorescence , Plant Leaves/chemistry , Spinacia oleracea/chemistry , Algorithms , Animals , Chlorophyll A , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted , Photons , Rats , Rats, Wistar , Scattering, Radiation
20.
J Vis Exp ; (87)2014 May 22.
Article in English | MEDLINE | ID: mdl-24894439

ABSTRACT

The use of a craniotomy for in vivo experiments provides an opportunity to investigate the dynamics of diverse cellular processes in the mammalian brain in adulthood and during development. Although most in vivo approaches use a craniotomy to study brain regions located on the dorsal side, brainstem regions such as the pons, located on the ventral side remain relatively understudied. The main goal of this protocol is to facilitate access to ventral brainstem structures so that they can be studied in vivo using electrophysiological and imaging methods. This approach allows study of structural changes in long-range axons, patterns of electrical activity in single and ensembles of cells, and changes in blood brain barrier permeability in neonate animals. Although this protocol has been used mostly to study the auditory brainstem in neonate rats, it can easily be adapted for studies in other rodent species such as neonate mice, adult rodents and other brainstem regions.


Subject(s)
Craniotomy/veterinary , Animals , Animals, Newborn , Craniotomy/instrumentation , Craniotomy/methods , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...