Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514343

ABSTRACT

Plants of the Phoradendron genus have been traditionally used for their lipid- and glucose-lowering effects. However, the compounds responsible for these effects and the overall chemical profile of these plants have not been thoroughly investigated. We aimed to characterize the metabolome of leaves, stems, and aerial parts of the Phoradendron brachystachyum plant. We used mass spectrometry and colorimetric screening techniques (with various solvents) to identify and characterize the metabolites present. We also evaluated the antioxidant (FRAP, ORAC, TEAC, and DPPH assays) and inhibitory effects on pancreatic lipase and α-glucosidase enzymes of hydrophilic extracts. Furthermore, we compared the molecular fingerprints between the identified metabolites and FDA-approved drugs to gain insights into the metabolites that might be responsible for the observed effects on enzymes. Our findings revealed the presence of 59 putative metabolites, primarily flavonoids. However, we also hint at the presence of peptide and carbohydrate derivatives. The leaf extracts demonstrated the most promising metrics across all assays, exhibiting strong antioxidant and enzyme inhibitory effects as well as high levels of phenolic compounds, flavonoids, and tannins. Fingerprint analysis suggested potential peptide and carbohydrate metabolites as pancreatic lipase and α-glucosidase inhibitors. Overall, our study provides evidence on specific metabolites in Phoradendron brachystachyum that could be responsible for the therapeutic effects noted in obese and type 2 diabetes subjects.

2.
Foods ; 11(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36359932

ABSTRACT

Phoradendron brachystachyum is an American mistletoe distributed in México and used ethnobotanically in infusions to treat hypertriglyceridemia and lower cholesterol levels. This study aimed to evaluate the bioaccessibility of the phenolic acids from mistletoe infusions and the effect of simulated digestion on its antioxidant and lipase inhibitory properties. The in vitro digestion process decreased the antioxidant capacity activity by the TEAC and ORAC assays in infusions from leaves, stems, and whole plant samples. Moreover, the individual phenolic content of mistletoe infusions was also affected by the in vitro digestion process; the most abundant individual phenolic constituents at the end of the digestion process were ferulic and quinic acids. These compounds showed low bioaccessibility values ranging from 7.48% to 22.60%. In addition, the in vitro digestion diminished the pancreatic lipase inhibition percentage of leaves and whole plant infusions but increased it in the stem samples. This research showed that given the phenolic content and pancreatic lipase inhibitory activity of mistletoe infusions, it could be used as a potential source for the development of functional foods and nutraceuticals; nonetheless, its phenolic content is affected by gastrointestinal digestion; thus, encapsulation strategies are encouraged to protect these metabolites from the gastrointestinal environment while preserving their antioxidant and hypolipidemic potentials.

3.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296609

ABSTRACT

The eggplant is a fruit rich in natural products and produced worldwide. However, its cultivation generates a large amount of scarcely used agricultural residues with poor chemical characterization. This study aimed to identify and quantify the metabolome and determine the composition of select phytochemicals and the overall antioxidant capacity of various anatomical parts of the plant. The plant's root, leaf, stem, and fruit were analyzed by quantitative mass spectrometry-based untargeted metabolomics and chemoinformatics, and phytochemicals were quantified by spectrophotometric analysis. Moreover, we determined the total antioxidant capacity of the distinct plant parts to infer a possible biological effect of the plant's metabolites. Various secondary metabolites were identified as terpenes, phenolic compounds, alkaloids, and saponins, distributed throughout the plant. The leaf and fruit presented the highest concentration of phenolic compounds, flavonoids, anthocyanins, and alkaloids, accompanied by the highest antioxidant capacity. Although the stem and root showed the lowest abundance of secondary metabolites, they provided around 20% of such compounds compared with the leaf and fruit. Overall, our study improved the understanding of the eggplant metabolome and concluded that the plant is rich in secondary metabolites, some with antioxidant properties, and shows potential nutraceutical and biopharmaceutical applications.


Subject(s)
Saponins , Solanum melongena , Solanum melongena/chemistry , Anthocyanins/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/analysis , Fruit/chemistry , Phenols/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , Metabolomics , Saponins/analysis , Terpenes/analysis
4.
Front Nutr ; 8: 790582, 2021.
Article in English | MEDLINE | ID: mdl-34938764

ABSTRACT

The Solanum genus is the largest in the Solanaceae family containing around 2,000 species. There is a great number of edibles obtained from this genus, and globally, the most common are tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S. melongena). Other fruits are common in specific regions and countries, for instance, S. nigrum, S. torvum, S. betaceum, and S. stramonifolium. Various reports have shown that flavonoids, phenolic acids, alkaloids, saponins, and other molecules can be found in these plants. These molecules are associated with various health-promoting properties against many non-communicable diseases, the main causes of death globally. Nonetheless, the transformations of the structure of antioxidants caused by cooking methods and gastrointestinal digestion impact their potential benefits and must be considered. This review provides information about antioxidant compounds, their bioaccessibility and bioavailability, and their health-promoting effects. Bioaccessibility and bioavailability studies must be considered when evaluating the bioactive properties of health-promoting molecules like those from the Solanum genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...