Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 18(4): e0283832, 2023.
Article in English | MEDLINE | ID: mdl-37023039

ABSTRACT

Edge effects resulting from adjacent land uses are poorly understood in agroecosystems yet understanding above and belowground edge effects is crucial for maintaining ecosystem function. The aim of our study was to examine impacts of land management on aboveground and belowground edge effects, measured by changes in plant community, soil properties, and soil microbial communities across agroecosystem edges. We measured plant composition and biomass, soil properties (total carbon, total nitrogen, pH, nitrate, and ammonium), and soil fungal and bacterial community composition across perennial grassland-annual cropland edges. Edge effects due to land management were detected both aboveground and belowground. The plant community at the edge was distinct from the adjacent land uses, where annual, non-native, plant species were abundant. Soil total nitrogen and carbon significantly decreased across the edge (P < 0.001), with the highest values in the perennial grasslands. Both bacterial and fungal communities were different across the edge with clear changes in fungal communities driven directly and indirectly by land management. A higher abundance of pathogens in the more heavily managed land uses (i.e. crop and edge) was detected. Changes in plant community composition, along with soil carbon and nitrogen also influenced the soil fungal community across these agroecosystems edges. Characterizing edge effects in agroecosystem, especially those associated with soil microbial communities, is an important first step in ensuring soil health and resilience in these managed landscapes.


Subject(s)
Microbiota , Soil , Soil/chemistry , Grassland , Canada , Bacteria , Nitrogen/analysis , Plants , Carbon/analysis , Soil Microbiology
2.
PLoS One ; 12(2): e0171599, 2017.
Article in English | MEDLINE | ID: mdl-28158284

ABSTRACT

Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector.


Subject(s)
Ecosystem , Forests , Picea , Alaska , Climate Change , Fires
3.
Ecology ; 97(11): 2986-2997, 2016 11.
Article in English | MEDLINE | ID: mdl-27870053

ABSTRACT

Long-term experiments provide a way to test presumed causes of successional or environmentally driven vegetation changes. Early-successional nitrogen (N)-fixing plants are widely thought to facilitate productivity and vegetation development on N-poor sites, thus accounting for observed vegetation patterns later in succession. We tested this facilitative impact on vegetation development in a 23-yr field experiment on an Interior Alaska (USA) floodplain. On three replicate early-successional silt bars, we planted late-successional white spruce (Picea glauca) seedlings in the presence and absence of planted seedlings of an early-successional N-fixing shrub, thinleaf alder (Alnus incana). Alder initially facilitated survivorship and growth of white spruce. Within six years, however, after canopy closure, alder negatively affected spruce survivorship and growth. Our three replicate sites followed different successional trajectories. One site was eliminated by erosion and supported no vegetation development during our study. The other two sites, which differed in site moisture, diverged in vegetation composition. Structural equation modeling (SEM) suggested that, in the drier of these two sites, alder inhibited spruce growth directly (presumably by competition) and indirectly through effects mediated by competition with other woody species. However, at the wetter site, alder had both positive and negative effects on spruce growth, with negative effects predominating. Snowshoe hares (Lepus americanus) in alder thickets further reduced height growth of spruce in the wetter site. We conclude that net effects of alder on white spruce, the late-successional dominant, were primarily inhibitory and indirect, with the mechanisms depending on initial site moisture. Our results highlight the importance of long-term research showing that small differences among initial replicate sites can cause divergence in successional trajectories, consistent with individualistic distributions of species and communities along environmental gradients. This divergence was detectable only decades later.


Subject(s)
Alnus/physiology , Forests , Alaska , Biodiversity , Population Dynamics , Rivers , Seedlings , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL