Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(16): 166001, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701475

ABSTRACT

A key challenge in materials discovery is to find high-temperature superconductors. Hydrogen and hydride materials have long been considered promising materials displaying conventional phonon-mediated superconductivity. However, the high pressures required to stabilize these materials have restricted their application. Here, we present results from high-throughput computation, considering a wide range of high-symmetry ternary hydrides from across the periodic table at ambient pressure. This large composition space is then reduced by considering thermodynamic, dynamic, and magnetic stability before direct estimations of the superconducting critical temperature. This approach has revealed a metastable ambient-pressure hydride superconductor, Mg_{2}IrH_{6}, with a predicted critical temperature of 160 K, comparable to the highest temperature superconducting cuprates. We propose a synthesis route via a structurally related insulator, Mg_{2}IrH_{7}, which is thermodynamically stable above 15 GPa, and discuss the potential challenges in doing so.

2.
Nat Commun ; 14(1): 7360, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963870

ABSTRACT

Nitrogen-doped lutetium hydride has recently been proposed as a near-ambient-conditions superconductor. Interestingly, the sample transforms from blue to pink to red as a function of pressure, but only the pink phase is claimed to be superconducting. Subsequent experimental studies have failed to reproduce the superconductivity, but have observed pressure-driven colour changes including blue, pink, red, violet, and orange. However, discrepancies exist among these experiments regarding the sequence and pressure at which these colour changes occur. Given the claimed relationship between colour and superconductivity, understanding colour changes in nitrogen-doped lutetium hydride may hold the key to clarifying the possible superconductivity in this compound. Here, we present a full microscopic theory of colour in lutetium hydride, revealing that hydrogen-deficient LuH2 is the only phase which exhibits colour changes under pressure consistent with experimental reports, with a sequence blue-violet-pink-red-orange. The concentration of hydrogen vacancies controls the precise sequence and pressure of colour changes, rationalising seemingly contradictory experiments. Nitrogen doping also modifies the colour of LuH2 but it plays a secondary role compared to hydrogen vacancies. Therefore, we propose hydrogen-deficient LuH2 as the key phase for exploring the superconductivity claim in the lutetium-hydrogen system. Finally, we find no phonon-mediated superconductivity near room temperature in the pink phase.

3.
J Chem Phys ; 159(14)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37815108

ABSTRACT

Machine-learned interatomic potentials are fast becoming an indispensable tool in computational materials science. One approach is the ephemeral data-derived potential (EDDP), which was designed to accelerate atomistic structure prediction. The EDDP is simple and cost-efficient. It relies on training data generated in small unit cells and is fit using a lightweight neural network, leading to smooth interactions which exhibit the robust transferability essential for structure prediction. Here, we present a variety of applications of EDDPs, enabled by recent developments of the open-source EDDP software. New features include interfaces to phonon and molecular dynamics codes, as well as deployment of the ensemble deviation for estimating the confidence in EDDP predictions. Through case studies ranging from elemental carbon and lead to the binary scandium hydride and the ternary zinc cyanide, we demonstrate that EDDPs can be trained to cover wide ranges of pressures and stoichiometries, and used to evaluate phonons, phase diagrams, superionicity, and thermal expansion. These developments complement continued success in accelerated structure prediction.

4.
Nat Commun ; 14(1): 5367, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37666834

ABSTRACT

Motivated by the recent report of room-temperature superconductivity at near-ambient pressure in N-doped lutetium hydride, we performed a comprehensive, detailed study of the phase diagram of the Lu-N-H system, looking for superconducting phases. We combined ab initio crystal structure prediction with ephemeral data-derived interatomic potentials to sample over 200,000 different structures. Out of the more than 150 structures predicted to be metastable within ~50 meV from the convex hull we identify 52 viable candidates for conventional superconductivity, for which we computed their superconducting properties from Density Functional Perturbation Theory. Although for some of these structures we do predict a finite superconducting Tc, none is even remotely compatible with room-temperature superconductivity as reported by Dasenbrock et al. Our work joins the broader community effort that has followed the report of near-ambient superconductivity, confirming beyond reasonable doubt that no conventional mechanism can explain the reported Tc in Lu-N-H.

5.
Nat Commun ; 14(1): 4458, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491484

ABSTRACT

Helium, the second most abundant element in the universe, exhibits an extremely large electronic band gap of about 20 eV at ambient pressures. While the metallization pressure of helium has been accurately determined, thus far little attention has been paid to the specific mechanisms driving the band-gap closure and electronic properties of this quantum crystal in the terapascal regime (1 TPa = 10 Mbar). Here, we employ density functional theory and many-body perturbation calculations to fill up this knowledge gap. It is found that prior to reaching metallicity helium becomes an excitonic insulator (EI), an exotic state of matter in which electrostatically bound electron-hole pairs may form spontaneously. Furthermore, we predict metallic helium to be a superconductor with a critical temperature of ≈ 20 K just above its metallization pressure and of ≈ 70 K at 100 TPa. These unforeseen phenomena may be critical for improving our fundamental understanding and modeling of celestial bodies.

6.
Phys Rev Lett ; 128(21): 215702, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687440

ABSTRACT

Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2})_{2} and (CH_{4})_{2}H_{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4})_{3}(H_{2})_{25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H_{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.

7.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33931549

ABSTRACT

The solar system's outer planets, and many of their moons, are dominated by matter from the H-C-N-O chemical space, based on solar system abundances of hydrogen and the planetary ices [Formula: see text]O, [Formula: see text], and [Formula: see text] In the planetary interiors, these ices will experience extreme pressure conditions, around 5 Mbar at the Neptune mantle-core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. While temperature will dictate the formation of compounds, ground-state density functional theory allows us to probe the chemical effects resulting from pressure alone. These structural developments in turn determine the planets' interior structures, thermal evolution, and magnetic field generation, among others. Despite its importance, the H-C-N-O system has not been surveyed systematically to explore which compounds emerge at high-pressure conditions, and what governs their stability. Here, we report on and analyze an unbiased crystal structure search among H-C-N-O compounds between 1 and 5 Mbar. We demonstrate that simple chemical rules drive stability in this composition space, which explains why the simplest possible quaternary mixture HCNO-isoelectronic to diamond-emerges as a stable compound and discuss dominant decomposition products of planetary ice mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...