Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Neuron ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38834068

ABSTRACT

Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, ß-amyloid (Aß), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.

2.
Autophagy ; : 1-16, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802071

ABSTRACT

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.

3.
Front Med (Lausanne) ; 11: 1363979, 2024.
Article in English | MEDLINE | ID: mdl-38606159

ABSTRACT

Introduction: Acute liver failure (ALF) is defined as acute loss of liver function leading to hepatic encephalopathy associated with a high risk of patient death. Brain injury markers in serum and tissue can help detect and monitor ALF-associated brain injury. This study compares different brain injury parameters in plasma and tissue along with the progression of ALF. Method: ALF was induced by performing an 85% liver resection. Following the resection, animals were recovered and monitored for up to 48 h or until reaching the predefined endpoint of receiving standard medical therapy (SMT). Blood and serum samples were taken at Tbaseline, T24, and upon reaching the endpoint (Tend). Control animals were euthanized by exsanguination following plasma sampling. Postmortem brain tissue samples were collected from the frontal cortex (FCTx) and cerebellum (Cb) of all animals. Glial fibrillary acidic protein (GFAP) and tau protein and mRNA levels were quantified using ELISA and qRT-PCR in all plasma and brain samples. Plasma neurofilament light (NFL) was also measured using ELISA. Results: All ALF animals (n = 4) were euthanized upon showing signs of brain herniation. Evaluation of brain injury biomarkers revealed that GFAP was elevated in ALF animals at T24h and Tend, while Tau and NFL concentrations were unchanged. Moreover, plasma glial fibrillary acidic protein (GFAP) levels were negatively correlated with total protein and positively correlated with both aspartate transaminase (AST) and alkaline phosphatase (AP). Additionally, lower GFAP and tau RNA expressions were observed in the FCTx of the ALF group but not in the CB tissue. Conclusion: The current large animal study has identified a strong correlation between GFAP concentration in the blood and markers of ALF. Additionally, the protein and gene expression analyses in the FCTx revealed that this area appears to be susceptible, while the CB is protected from the detrimental impacts of ALF-associated brain swelling. These results warrant further studies to investigate the mechanisms behind this process.

5.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232138

ABSTRACT

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Subject(s)
Frontotemporal Dementia , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
6.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38277467

ABSTRACT

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Peptides , Proteomics
7.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293125

ABSTRACT

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.

8.
Front Cell Dev Biol ; 11: 1251551, 2023.
Article in English | MEDLINE | ID: mdl-37614226

ABSTRACT

Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.

11.
PLoS Biol ; 21(3): e3002028, 2023 03.
Article in English | MEDLINE | ID: mdl-36930682

ABSTRACT

A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Heterogeneous-Nuclear Ribonucleoprotein L , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA , Nerve Tissue Proteins/metabolism
13.
iScience ; 25(11): 105272, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36213006

ABSTRACT

Blood neurofilament light chain (NFL) is proposed to serve as an estimate of disease severity in hospitalized patients with coronavirus disease 2019 (COVID-19). We show that NFL concentrations in plasma collected from 880 patients with COVID-19 within 5 days of hospital admission were elevated compared to controls. Higher plasma NFL associated with worse clinical outcomes including the need for mechanical ventilation, intensive care, prolonged hospitalization, and greater functional disability at discharge. No difference in the studied clinical outcomes between black/African American and white patients was found. Finally, vaccination associated with less disability at time of hospital discharge. In aggregate, our findings support the utility of measuring NFL shortly after hospital admission to estimate disease severity and show that race does not influence clinical outcomes caused by COVID-19 assuming equivalent access to care, and that vaccination may lessen the degree of COVID-19-caused disability.

14.
Science ; 378(6615): 94-99, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36201573

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA-Binding Proteins , Frontotemporal Dementia , Protein Serine-Threonine Kinases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomes/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
15.
Acta Neuropathol Commun ; 10(1): 107, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879741

ABSTRACT

Frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) is a neurodegenerative disease primarily affecting the frontal and/or temporal cortices. However, a growing body of evidence suggests that the cerebellum contributes to biochemical, cognitive, and behavioral changes in FTLD-TDP. To evaluate cerebellar TDP-43 expression and function in FTLD-TDP, we analyzed TDP-43 protein levels and the splicing of a TDP-43 target, STMN2, in the cerebellum of 95 FTLD-TDP cases and 25 non-neurological disease controls. Soluble TDP-43 was decreased in the cerebellum of FTLD-TDP cases but a concomitant increase in insoluble TDP-43 was not seen. Truncated STMN2 transcripts, an indicator of TDP-43 dysfunction, were elevated in the cerebellum of FTLD-TDP cases and inversely associated with TDP-43 levels. Additionally, lower cerebellar TDP-43 associated with a younger age at disease onset. We provide evidence of TDP-43 loss of function in the cerebellum in FTLD-TDP, supporting further investigation into this understudied brain region.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Neurodegenerative Diseases , Cerebellum/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/pathology , Humans , Neurodegenerative Diseases/pathology
16.
Cell ; 185(8): 1346-1355.e15, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35247328

ABSTRACT

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.


Subject(s)
Frontotemporal Dementia , Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Amyloid , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
17.
Nature ; 603(7899): 124-130, 2022 03.
Article in English | MEDLINE | ID: mdl-35197626

ABSTRACT

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/metabolism , Genome-Wide Association Study , Humans , Motor Neurons/pathology , Nerve Tissue Proteins
19.
Sci Transl Med ; 13(602)2021 07 14.
Article in English | MEDLINE | ID: mdl-34131052

ABSTRACT

Brain imaging studies of patients with COVID-19 show evidence of macro- and microhemorrhagic lesions, multifocal white matter hyperintensities, and lesions consistent with posterior reversible leukoencephalopathy. Imaging studies, however, are subject to selection bias, and prospective studies are challenging to scale. Here, we evaluated whether serum neurofilament light chain (NFL), a neuroaxonal injury marker, could predict the extent of neuronal damage in a cohort of 142 hospitalized patients with COVID-19. NFL was elevated in the serum of patients with COVID-19 compared to healthy controls, including those without overt neurological manifestations. Higher NFL serum concentrations were associated with worse clinical outcomes. In 100 hospitalized patients with COVID-19 treated with remdesivir, a trend toward lower NFL serum concentrations was observed. These data suggest that patients with COVID-19 may experience neuroaxonal injury and may be at risk for long-term neurological sequelae. Neuroaxonal injury should be considered as an outcome in acute pharmacotherapeutic trials for COVID-19.


Subject(s)
COVID-19 , Tumor Necrosis Factor Ligand Superfamily Member 14 , Biomarkers , Humans , Intermediate Filaments , Magnetic Resonance Imaging , Neurofilament Proteins , Prospective Studies , SARS-CoV-2
20.
Cell Rep ; 34(11): 108843, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730588

ABSTRACT

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , tau Proteins/metabolism , Antibodies/metabolism , Brain/metabolism , Brain/pathology , Corticobasal Degeneration/pathology , Humans , Pick Disease of the Brain/pathology , Protein Aggregates , Time Factors , tau Proteins/cerebrospinal fluid , tau Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...