Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol ; 115: 13-22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37717641

ABSTRACT

Orexin in both the lateral hypothalamus (LH) and medial septum (MS) is involved in sleep- and consciousness-related conditions. Since orexin modulates the intoxicating as well as rewarding effects of ethanol, this study focused on the role of orexin-projecting neurons from the LH to the MS, and this neurocircuit's role in mediating the sedative effects of alcohol. Drinking-in-the-Dark (DID) behavior was also assessed as a measure of the role of the LH-MS pathway in modulating binge-like ethanol intake, with a particular focus on sex differences in both behavioral paradigms. Male and female Hcrt-ires-cre mice received cannulation in the MS, while the LH was injected bilaterally with cre-dependent excitatory (Gq) Designer Receptor Exclusively Activated by Designer Drug (DREADD), inhibitory (Gi) DREADD or control virus. All subjects received a 3.75 g/kg dose of 20 % ethanol intraperitoneally and the sedative effect was assessed by the loss of righting reflex (LORR). After behavioral testing, brains were used for c-Fos immunohistochemistry analyses. A separate cohort of mice was used for a 2-week DID protocol using excitatory (Gq) DREADD and control virus. Gq DREADD-induced activation of the orexin neurocircuitry from the LH to the MS significantly reduced sedation time in both female and male mice. Furthermore, CNO treatment failed to alter ethanol sedation times in both animals expressing Gi DREADDs and control virus. There were no significant differences in blood ethanol concentrations (BECs) in any experimental group, suggesting that changes in sedation were not due to treatment-induced alterations of ethanol metabolism. Interestingly, in the DID study, only male mice decreased their ethanol consumption when Gq DREADDs were activated. These results provide novel evidence on the role played by this orexinergic LH to MS circuit on the sedative effects of ethanol and ethanol consumption in a sex-dependent manner. Thus, the MS should be considered further as a novel sexually dimorphic target.


Subject(s)
Ethanol , Hypothalamic Area, Lateral , Humans , Female , Male , Animals , Mice , Ethanol/pharmacology , Orexins , Alcohol Drinking , Hypnotics and Sedatives
2.
Alcohol Clin Exp Res ; 43(10): 2134-2143, 2019 10.
Article in English | MEDLINE | ID: mdl-31386210

ABSTRACT

BACKGROUND: Chronic ethanol (EtOH) exposure induces neurobehavioral maladaptations in the brain though the precise changes have not been fully explored. The central nucleus of the amygdala (CEA) regulates anxiety-like behavior induced by withdrawal from chronic intermittent EtOH (CIE) exposure, and the arginine vasopressin (AVP) system within the CEA regulates many anxiety-like behaviors. Thus, adaptations occur in the CEA AVP system due to chronic EtOH exposure, which lead to anxiety-like behaviors in rats. METHODS: Chronic exposure to a low-dose EtOH (4.5% wt/vol) induces anxiety-like behavior in rats. Wistar or Sprague Dawley rats were exposed to a modified CIE or CIE, while intra-CEA microinjections of AVP or a V1b receptor antagonist were used to elicit or block withdrawal-induced anxiety. Additionally, AVP microinjections into the CEA were given 24 hours following 15 days of continuous high-dose EtOH (7% wt/vol), a time period when rats no longer express anxiety. Chemogenetics was also used to activate the basolateral amygdala (BLA) or deactivate the dorsal periaqueductal gray=(dm/dlPAG) therefore PAG=periaqueductal gray to elicit or block withdrawal-induced anxiety. RESULTS: AVP microinjected into the CEA in lieu of exposure to the first 2 cycles of CIE was sufficient to induce anxiety-like behavior in these commonly used rat strains. The V1b receptor antagonist, but not an oxytocin receptor agonist, into the CEA during the first 2 withdrawal cycles suppressed anxiety. However, activation of the BLA in lieu of exposure to the first 2 cycles of CIE was insufficient to induce anxiety-like behavior. AVP microinjection into the CEA 24 hours into withdrawal reelicited anxiety-like behavior, and deactivation of the dm/dlPAG reduced this effect of CEA AVP. CONCLUSIONS: Taken together, this study demonstrates a role of CEA AVP and a CEA-dm/dlPAG circuit in the development of anxiety induced by CIE. Such information is valuable for identifying novel therapeutic targets for alcohol- and anxiety-associated disorders.


Subject(s)
Amygdala/drug effects , Anxiety/psychology , Arginine Vasopressin/pharmacology , Central Nervous System Depressants , Ethanol , Interpersonal Relations , Substance Withdrawal Syndrome/psychology , Animals , Anxiety/etiology , Anxiety/physiopathology , Arginine Vasopressin/administration & dosage , Behavior, Animal , Male , Microinjections , Periaqueductal Gray/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Vasopressin/drug effects , Substance Withdrawal Syndrome/complications , Substance Withdrawal Syndrome/physiopathology
3.
Neuron ; 103(3): 423-431.e4, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31196673

ABSTRACT

The paraventricular thalamus (PVT) is an interface for brain reward circuits, with input signals arising from structures, such as prefrontal cortex and hypothalamus, that are broadcast to downstream limbic targets. However, the precise synaptic connectivity, activity, and function of PVT circuitry for reward processing are unclear. Here, using in vivo two-photon calcium imaging, we find that PVT neurons projecting to the nucleus accumbens (PVT-NAc) develop inhibitory responses to reward-predictive cues coding for both cue-reward associative information and behavior. The multiplexed activity in PVT-NAc neurons is directed by opposing activity patterns in prefrontal and lateral hypothalamic afferent axons. Further, we find that prefrontal cue encoding may maintain accurate cue-reward processing, as optogenetic disruption of this encoding induced long-lasting effects on downstream PVT-NAc cue responses and behavioral cue discrimination. Together, these data reveal that PVT-NAc neurons act as an interface for reward processing by integrating relevant inputs to accurately inform reward-seeking behavior.


Subject(s)
Association Learning/physiology , Hypothalamic Area, Lateral/physiology , Midline Thalamic Nuclei/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Craving/physiology , Cues , Glutamic Acid/physiology , Hypothalamic Area, Lateral/cytology , Mice , Midline Thalamic Nuclei/cytology , Neural Pathways/physiology , Optogenetics , Patch-Clamp Techniques , Prefrontal Cortex/cytology , Reward , gamma-Aminobutyric Acid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...