Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8163, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581294

ABSTRACT

Historic declines in oyster populations have resulted in diminished production of ecosystem services and habitat function in many estuaries. Due to the important role of oysters in ecosystem function, scientists and resource managers have employed oyster reef restoration to mitigate declines, recover essential ecosystem services, and better habitat function. Yet, there are knowledge gaps regarding the impact of restoration efforts on ecologically valuable mid-trophic level organisms inhabiting these systems. To address this knowledge gap, here we quantify macroinvertebrate species abundance, community diversity, and composition on experimental restored oyster reefs before and after restoration, and from live (positive control) and dead (negative control) reefs in the Indian River Lagoon, Florida. Species diversity and composition on restored reefs shifted towards states similar to live (positive control) reefs within 12 months of restoration. Recovery of species abundance occurred within 18 months of restoration. The results presented herein quantify the effect of restoration on resident macroinvertebrates and provide timelines of recovery for each attribute of these communities. Further, this study presents an actionable and transferable framework for identifying effective single-species metrics of restoration success across ecosystems. The application of this framework will provide managers and researchers with tools to improve the efficiency and efficacy of post-restoration monitoring. By doing so, this study contributes significantly to the improvement of broader restoration practices in an era of unprecedented habitat loss.


Subject(s)
Ecosystem , Ostreidae , Animals , Estuaries , Rivers , Seafood
2.
Glob Chang Biol ; 21(7): 2554-2568, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25778777

ABSTRACT

The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic phenomena including climate, hurricanes, coastal development, agricultural runoff, oil spills, and fishing. These complex and interacting stressors, together with the highly dynamic nature of this ecosystem, present challenges for the effective management of its resources. We analyze a compilation of over 100 indicators representing physical, biological, and economic aspects of the Gulf of Mexico and find that an ecosystem-wide reorganization occurred in the mid-1990s. Further analysis of fishery landings composition data indicates a major shift in the late 1970s coincident with the advent of US national fisheries management policy, as well as significant shifts in the mid-1960s and the mid-1990s. These latter shifts are aligned temporally with changes in a major climate mode in the Atlantic Ocean: the Atlantic Multidecadal Oscillation (AMO). We provide an explanation for how the AMO may drive physical changes in the Gulf of Mexico, thus altering higher-level ecosystem dynamics. The hypotheses presented here should provide focus for further targeted studies, particularly in regard to whether and how management should adjust to different climate regimes or states of nature. Our study highlights the challenges in understanding the effects of climatic drivers against a background of multiple anthropogenic pressures, particularly in a system where these forces interact in complex and nonlinear ways.

3.
PLoS One ; 9(7): e103654, 2014.
Article in English | MEDLINE | ID: mdl-25077486

ABSTRACT

A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50-84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.


Subject(s)
Fishes/physiology , Animal Distribution , Animals , California , Coral Reefs , Female , Larva/physiology , Male , Nesting Behavior , Otolithic Membrane/metabolism , Population Dynamics
4.
PLoS One ; 8(8): e70766, 2013.
Article in English | MEDLINE | ID: mdl-23951002

ABSTRACT

There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.


Subject(s)
Conservation of Natural Resources , Ecosystem , Human Activities , Models, Theoretical , Florida , Geography , Humans , Oceanography
5.
Integr Comp Biol ; 52(4): 511-24, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22888173

ABSTRACT

The exchange of individuals among habitat patches (connectivity) has broad relevance for the conservation and management of marine metapopulations. Elemental fingerprinting-based research conducted over the past 12 years along the open coastline and bays of San Diego County in southern California evaluated connectivity patterns for seven species: one native and two invasive mussels, an oyster, a brachyuran crab, and two fishes. The studies spanned different years and seasons but overlapped considerably in space, allowing comparisons of dispersal patterns across species, and assessment of the relative importance of location, circulation, and intra-annual and inter-annual variability. We asked whether the species exhibited commonalities in directional transport, transport distances, sources and sinks, self-recruitment, and bay-ocean exchange. Linked connectivity-demographic analyses conducted for two species of mytilid mussels and two fishes allowed evaluation of the contributions of realized connectivity to metapopulation dynamics relative to other life-history attributes. Common trends across species include average along-shore dispersal distances of 15-35 km and seasonal changes in direction of dispersal that mirrored patterns of along-shore circulation. We observed greater isolation of back-bay populations, significant exchange from front bay to ocean, and high self-recruitment in locations on the northern, open coast, and in the southern bays. Connectivity was rarely the most influential driver of growth and persistence of metapopulations, but influenced the importance of other vital rates. Several locations served consistently as sources of larvae or as nurseries for multiple species, but there were few sites in common that were sinks. For the mussels, reproductive timing guided directional transport. These results imply that local management (e.g., habitat protection, opening of the mouths of lagoons, location of aquaculture farms) may be effective along this coastline. Regional, multi-species assessments of exchange of larvae should move us closer to ecosystem-based management.


Subject(s)
Ecosystem , Fishes/physiology , Invertebrates/physiology , Animals , Demography , Fishes/classification , Invertebrates/classification
6.
Proc Biol Sci ; 279(1738): 2580-8, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22398162

ABSTRACT

Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota.


Subject(s)
Ecosystem , Hydrothermal Vents , Methane/metabolism , Seawater , Animals , Bivalvia , Costa Rica , Gastropoda , Plants
7.
Ecology ; 92(10): 1972-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22073788

ABSTRACT

Recently researchers have gone to great lengths to measure marine metapopulation connectivity via tagging, genetic, and trace-elemental fingerprinting studies. These empirical estimates of larval dispersal are key to assessing the significance of metapopulation connectivity within a demographic context, but the life-history data required to do this are rarely available. To evaluate the demographic consequences of connectivity we constructed seasonal, size-structured metapopulation matrix models for two species of mytilid mussel in San Diego County, California, USA. The self-recruitment and larval exchange terms were produced from a time series of realized connectivities derived from trace-elemental fingerprinting of larval shells during spring and fall from 2003 to 2008. Both species exhibited a strong seasonal pattern of southward movement of recruits in spring and northward movement in fall. Growth and mortality terms were estimated using mark-recapture data from representative sites for each species and subpopulation, and literature estimates of juvenile mortality. Fecundity terms were estimated using county-wide settlement data from 2006-2008; these data reveal peak reproduction and recruitment in fall for Mytilus californianus, and spring for M. galloprovincialis. Elasticity and life-stage simulation analyses were employed to identify the season- and subpopulation-specific vital rates and connectivity terms to which the metapopulation growth rate (lambda) was most sensitive. For both species, metapopulation growth was most sensitive to proportional changes in adult fecundity, survival and growth of juvenile stages, and population connectivity, in order of importance, but relatively insensitive to adult growth or survival. The metapopulation concept was deemed appropriate for both Mytilus species as exchange between the subpopulations was necessary for subpopulation persistence. However, highest metapopulation growth occurred in years when a greater proportion of recruits was retained within the predominant source subpopulation. Despite differences in habitat and planktonic duration, both species exhibited similar overall metapopulation dynamics with respect to key life stages and processes. However, different peak reproductive periods in an environment of seasonal current reversals led to different regional (subpopulation) contributions to metapopulation maintenance; this result emphasizes the importance of connectivity analysis for spatial management of coastal resources.


Subject(s)
Ecosystem , Mytilus/physiology , Animals , Demography , Environmental Monitoring , Larva/physiology , Models, Biological , Oceans and Seas , Population Dynamics
8.
Plast Reconstr Surg ; 121(1 Suppl): 1-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18182958

ABSTRACT

LEARNING OBJECTIVES: After studying this article, the participant should be able to: 1. Analyze the patient's medical and basal joint arthritis condition. 2. Understand and communicate the treatment alternatives to the patient. 3. Formulate and carry out a surgical plan for the appropriate operative candidate. 4. Understand the expected outcomes and the potential complications and their management. SUMMARY: This article has been prepared to accompany practice-based assessment with ongoing surgical education for the Maintenance of Certification for the American Board of Plastic Surgery. It is structured to outline the care of the patient with arthritis of the thumb carpometacarpal joint.


Subject(s)
Carpometacarpal Joints/surgery , Orthopedic Procedures/methods , Osteoarthritis/surgery , Thumb/surgery , Humans , Ligaments, Articular/surgery , Orthopedic Procedures/adverse effects , Osteoarthritis/diagnosis , Osteoarthritis/therapy , Osteotomy , Splints , Tendons/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...