Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Immunology ; 119(2): 243-53, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17005004

ABSTRACT

Interleukin (IL)-7 and IL-15 are cytokines implicated in homeostatic control of the peripheral CD8 T-cell pool. We compared the effects of IL-7 and IL-15 on survival and proliferation of purified human CD8+ T-cell subsets. Low concentrations of either cytokine reduced the spontaneous apoptosis of all subsets, and enhancement of survival corresponded to the extent of Bcl-2 up-regulation. Surprisingly, although minimal proliferation of naïve CD8+ T cells was observed during the first week of culture with cytokines, a marked expansion of these cells occurred at later time points, particularly in response to IL-15. This occurred largely without phenotypic change or acquisition of effector function, indicating a dissociation of differentiation from proliferation. Notably, progression of naïve CD8+ T cells through several cell divisions resulted in up-regulation of telomerase and the maintenance of telomere length. These data show that IL-7 and IL-15 induce cell proliferation and rescue from apoptosis in a concentration, time and subset-dependent manner, and have implications for the homeostatic expansion of the naïve CD8+ T-cell pool.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-15/immunology , Interleukin-7/immunology , Telomere/immunology , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Dose-Response Relationship, Immunologic , Flow Cytometry/methods , Humans , Immunophenotyping , Leukocyte Common Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, CCR7 , Receptors, Chemokine/metabolism , T-Lymphocyte Subsets/immunology , Telomerase/metabolism
2.
J Clin Invest ; 116(9): 2423-33, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16955142

ABSTRACT

While memory T cells are maintained by continuous turnover, it is not clear how human regulatory CD4+ CD45RO+ CD25hi Foxp3+ T lymphocyte populations persist throughout life. We therefore used deuterium labeling of cycling cells in vivo to determine whether these cells could be replenished by proliferation. We found that CD4+ CD45RO+ Foxp3+ CD25hi T lymphocytes were highly proliferative, with a doubling time of 8 days, compared with memory CD4+ CD45RO+ Foxp3- CD25- (24 days) or naive CD4+ CD45RA+ Foxp3- CD25- populations (199 days). However, the regulatory population was susceptible to apoptosis and had critically short telomeres and low telomerase activity. It was therefore unlikely to be self regenerating. These data are consistent with continuous production from another population source. We found extremely close TCR clonal homology between regulatory and memory CD4+ T cells. Furthermore, antigen-related expansions within certain TCR Vbeta families were associated with parallel numerical increases of CD4+ CD45RO+ CD25hi Foxp3+ Tregs with the same Vbeta usage. It is therefore unlikely that all human CD4+ CD25+ Foxp3+ Tregs are generated as a separate functional lineage in the thymus. Instead, our data suggest that a proportion of this regulatory population is generated from rapidly dividing, highly differentiated memory CD4+ T cells; this has considerable implications for the therapeutic manipulation of these cells in vivo.


Subject(s)
Antigens, CD/immunology , CD4 Antigens/immunology , Dipeptidyl Peptidase 4/immunology , Leukocyte Common Antigens/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Cell Cycle , Female , Flow Cytometry , Humans , Immunologic Memory , Immunophenotyping , Lymphocyte Activation , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/cytology , Telomere/ultrastructure
3.
J Immunol ; 175(12): 8218-25, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16339561

ABSTRACT

Repeated antigenic encounter drives proliferation and differentiation of memory T cell pools. An important question is whether certain specific T cells may be driven eventually to exhaustion in elderly individuals since the human life expectancy is increasing. We found that CMV-specific CD4+ T cells were significantly expanded in healthy young and old carriers compared with purified protein derivative-, varicella zoster virus-, EBV-, and HSV-specific populations. These CMV-specific CD4+ T cells exhibited a late differentiated phenotype since they were largely CD27 and CD28 negative and had shorter telomeres. Interestingly, in elderly CMV-seropositive subjects, CD4+ T cells of different specificities were significantly more differentiated than the same cells in CMV-seronegative individuals. This suggested the involvement of bystander-secreted, differentiation-inducing factors during CMV infection. One candidate was IFN-alpha, which induced loss of costimulatory receptors and inhibited telomerase in activated CD4+ T cells and was secreted at high levels by CMV-stimulated plasmacytoid dendritic cells (PDC). The CMV-specific CD4+ T cells in elderly subjects had severely restricted replicative capacity. This is the first description of a human memory T cell population that is susceptible to being lost through end-stage differentiation due to the combined effects of lifelong virus reactivation in the presence of bystander differentiation-inducing factors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Carrier State/immunology , Cytomegalovirus/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Bystander Effect/immunology , Cell Differentiation , Cell Proliferation , Dendritic Cells/immunology , Humans , Immunologic Memory , Lymphocyte Activation/immunology
4.
J Exp Med ; 199(10): 1433-43, 2004 May 17.
Article in English | MEDLINE | ID: mdl-15148341

ABSTRACT

The extent of human memory T cell proliferation, differentiation, and telomere erosion that occurs after a single episode of immune challenge in vivo is unclear. To investigate this, we injected tuberculin purified protein derivative (PPD) into the skin of immune individuals and isolated responsive T cells from the site of antigenic challenge at different times. PPD-specific CD4+ T cells proliferated and differentiated extensively in the skin during this secondary response. Furthermore, significant telomere erosion occurred in specific T cells that respond in the skin, but not in those that are found in the blood from the same individuals. Tissue fluid obtained from the site of PPD challenge in the skin inhibited the induction of the enzyme telomerase in T cells in vitro. Antibody inhibition studies indicated that type I interferon (IFN), which was identified at high levels in the tissue fluid and by immunohistology, was responsible in part for the telomerase inhibition. Furthermore, the addition of IFN-alpha to PPD-stimulated CD4+ T cells directly inhibited telomerase activity in vitro. Therefore, these results suggest that the rate of telomere erosion in proliferating, antigen-specific CD4+ T cells may be accelerated by type I IFN during a secondary response in vivo.


Subject(s)
Immunologic Memory/immunology , T-Lymphocytes/immunology , Telomerase/drug effects , Telomerase/immunology , Telomere/genetics , BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Humans , In Situ Hybridization, Fluorescence , Lymphocyte Activation
5.
Blood ; 103(1): 162-7, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-12969961

ABSTRACT

Human-virus-specific CD8+ T cells that are found during primary infection have been studied almost exclusively in the peripheral blood, and it is unclear whether these cells are regulated in the same way as those in secondary lymphoid tissue. We investigated, therefore, the control of apoptosis and telomere erosion of Epstein-Barr virus (EBV)-specific CD8+ T cells found in the blood and tonsils of the same patients during acute infectious mononucleosis (AIM). Although the clonal composition of CD8+ T cells as determined by heteroduplex analysis was similar in both compartments, there was greater CD28 expression in the tonsil population, indicating that they were less differentiated. EBV-specific CD8+ T cells in both tissue types were extremely susceptible to apoptosis related to low Bcl-2 expression and were dependent on exogenous cytokines such as interleukin-2 (IL-2), IL-15, and interferon-alpha/beta (IFN-alpha/beta) for survival. In both compartments, however, these cells maintained their telomere lengths through telomerase induction. Thus, apoptosis-prone EBV-specific CD8+ T cells found during acute infection have to be rescued from death to persist as a memory population. However, signals that induce telomerase ensure that the rescued cells retain their replicative capacity. Significantly, these processes operate identically in cells found in blood and secondary lymphoid tissue.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Telomerase/metabolism , Acute Disease , Apoptosis , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/enzymology , Case-Control Studies , Cell Differentiation , Cell Division , Cytokines/metabolism , Herpesvirus 4, Human/immunology , Humans , Immunologic Memory , Infectious Mononucleosis/enzymology , Palatine Tonsil/immunology , Palatine Tonsil/pathology
SELECTION OF CITATIONS
SEARCH DETAIL