Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 867963, 2022.
Article in English | MEDLINE | ID: mdl-35774404

ABSTRACT

Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.


Subject(s)
Heme , Streptococcus pyogenes , Animals , Female , Heme/metabolism , Heme-Binding Proteins , Hemoglobins/metabolism , Iron/metabolism , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
2.
J Bacteriol ; 202(14)2020 06 25.
Article in English | MEDLINE | ID: mdl-32393520

ABSTRACT

Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Membrane Transport Proteins/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism , Animals , Bacterial Proteins/genetics , Biological Transport , Female , Gene Expression Regulation, Bacterial , Humans , Iron/metabolism , Membrane Transport Proteins/genetics , Mice , Streptococcus pyogenes/genetics , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/pathogenicity , Virulence
3.
mBio ; 10(3)2019 06 25.
Article in English | MEDLINE | ID: mdl-31239377

ABSTRACT

Streptococcus pyogenes (group A streptococcus [GAS]) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide transcriptome sequencing (RNASeq) data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen Streptococcus agalactiae (group B streptococcus [GBS]). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.IMPORTANCE Colonization of the host requires the ability to adapt to an environment that is often low in essential nutrients such as iron. Here we present data showing that the transcriptome of the important human pathogen Streptococcus pyogenes shows extensive remodeling during in vivo growth, resulting in, among many other differentially expressed genes and pathways, a significant increase in genes involved in acquiring iron from host heme. Data show that HupY, previously characterized as an adhesin in both S. pyogenes and the related pathogen Streptococcus agalactiae, binds heme and affects intracellular iron concentrations. HupY, a protein with no known heme binding domains, represents a novel heme binding protein playing an important role in bacterial iron homeostasis as well as vaginal colonization.


Subject(s)
Adhesins, Bacterial/genetics , Iron/metabolism , Mucous Membrane/microbiology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Vagina/microbiology , Animals , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Bacterial , High-Throughput Nucleotide Sequencing , Homeostasis , Mice , Regulon/genetics , Streptococcus pyogenes/growth & development
4.
Infect Immun ; 86(4)2018 04.
Article in English | MEDLINE | ID: mdl-29378799

ABSTRACT

Streptococcus agalactiae (group B streptococcus [GBS]) can colonize the human vaginal tract, leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using transcriptome sequencing (RNA-Seq), the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being upregulated in vivo One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, is shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acts as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.


Subject(s)
Gene Expression Regulation, Bacterial , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology , Streptococcus agalactiae/genetics , Transcriptome , Vagina/metabolism , Vagina/microbiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Female , Mice , Signal Transduction
5.
Microbiol Spectr ; 2(5): 0012, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25392747

ABSTRACT

The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusing on the role of plasmids in biofilm development and the role of biofilms in plasmid maintenance, copy number control, and transfer. The studies examined herein highlight the importance of biofilms as an important ecological niche in which bacterial plasmids play an essential role.

6.
Microbiol Spectr ; 2(5)2014 Oct.
Article in English | MEDLINE | ID: mdl-26104356

ABSTRACT

The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface-attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This article reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusing on the role of plasmids in biofilm development and the role of biofilms in plasmid maintenance, copy-number control, and transfer. The studies examined herein highlight the importance of biofilms as an important ecological niche in which bacterial plasmids play an essential role.


Subject(s)
Bacteria/genetics , Bacterial Physiological Phenomena , Biofilms/growth & development , Plasmids , DNA Replication , Gene Transfer, Horizontal , Genomic Instability
7.
Proc Natl Acad Sci U S A ; 110(17): 7086-90, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23569272

ABSTRACT

Conjugation is one of the most common ways bacteria acquire antibiotic resistance, contributing to the emergence of multidrug-resistant "superbugs." Bacteria of the genus Enterococcus faecalis are highly antibiotic-resistant nosocomial pathogens that use the mechanism of conjugation to spread antibiotic resistance between resistance-bearing donor cells and resistance-deficient recipient cells. Here, we report a unique quorum sensing-based communication system that uses two antagonistic signaling molecules to regulate conjugative transfer of tetracycline-resistance plasmid pCF10 in E. faecalis. A "mate-sensing" peptide sex pheromone produced by recipient cells is detected by donor cells to induce conjugative genetic transfer. Using mathematical modeling and experimentation, we show that a second antagonistic "self-sensing" signaling peptide, previously known to suppress self-induction of donor cells, also serves as a classic quorum-sensing signal for donors that functions to reduce antibiotic-resistance transfer at high donor density. This unique form of quorum sensing may provide a means of limiting the spread of the plasmid and present opportunities to control antibiotic-resistance transfer through manipulation of intercellular signaling, with implications in the clinical setting.


Subject(s)
Conjugation, Genetic/physiology , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/genetics , Models, Biological , Protein Sorting Signals/genetics , Quorum Sensing/physiology , Drug Resistance, Bacterial/physiology , Enterococcus faecalis/physiology , Plasmids/genetics , Real-Time Polymerase Chain Reaction , Sex Attractants/metabolism , Tetracycline
8.
PLoS One ; 5(10)2010 Oct 04.
Article in English | MEDLINE | ID: mdl-20957231

ABSTRACT

BACKGROUND: Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis. METHODOLOGY/PRINCIPAL FINDINGS: When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS⁻E. faecalis, and 9/10 succumbed compared to 2/9 (p<0.005), suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group) immediately before challenge with AS+E. faecalis, reduced total vegetation (endocarditis lesion) microbial counts (7.9 x 106 versus 2.0 x 105, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation. CONCLUSIONS/SIGNIFICANCE: The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+E. faecalis illness.


Subject(s)
Endocarditis/microbiology , Enterococcus faecalis/isolation & purification , Immunoglobulin Fab Fragments/metabolism , Animals , Endocarditis/physiopathology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...