Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Clin Pathol ; 160(2): 194-199, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37086490

ABSTRACT

OBJECTIVES: The HLA-DQA1*05 variant (rs2097432) is associated with increased risk of immunogenicity to tumor necrosis factor antagonists, with subsequent resistance to therapy in patients with inflammatory bowel disease. Identification of these patients would optimize personalized therapeutic selection. METHODS: Genomic DNA was extracted from 80 deidentified samples in an unselected patient population with an unknown rs2097432 genotype. Split sample analysis was performed using a reference laboratory. Primer probes for a TaqMan quantitative polymerase chain reaction (qPCR) assay (Thermo Fisher Scientific) were custom designed. Synthesized genomic-block fragments were used as controls. All qPCR reactions were performed using a TaqMan GTXpress Master Mix (Thermo Fisher Scientific) on the Applied Biosystems 7500 system under fast cycling conditions. RESULTS: Of 80 samples, 50% were wild-type reference genotypes, 22.5% were heterozygous, and 27.5% were homozygous variant calls, comparable to population data. Split analysis samples between 2 independent laboratories were 100% concordant. The detection limit tested across genomic-block controls processed in duplicate was reproducible on sample input from 10 ng titrated down to 1.25 ng across 2 independent runs. Further, analytical specificity assessed with previous wild-type reference and homozygous variant DNA spiked into genomic-block controls produced appropriate heterozygous genotypes. CONCLUSIONS: Here we present validation of a lab-developed test for a rapid HLA-DQA1*05 (rs2097432) pharmacogenomics assay targeting a hotspot identified by genome-wide association studies. Targeted genotyping employed here will allow for expeditious personalized therapeutic selection.


Subject(s)
HLA-DQ Antigens , Inflammatory Bowel Diseases , Humans , HLA-DQ Antigens/genetics , Pharmacogenetics , Genome-Wide Association Study , Genotype , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Alleles , Necrosis/genetics
3.
J Appl Lab Med ; 8(2): 251-263, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36611001

ABSTRACT

BACKGROUND: In the US adverse drug reactions (ADRs) are estimated to cause 100 000 fatalities and cost over $136 billion annually. A patient's genes play a significant role in their response to a drug. Pharmacogenomics aims to optimize drug choice and dose for individual patients by characterizing patients' pharmacologically relevant genes to identify variants of known impact. METHODS: DNA was extracted from randomly selected remnant whole blood samples from Caucasian patients with previously performed complete blood counts. Samples were genotyped by mass spectrometry using a customized pharmacogenomics panel. A third-party result interpretation service used genotypic results to predict likely individual responses to frequently prescribed drugs. RESULTS: Complete genotypic and phenotypic calls for all tested Cytochrome P450 isoenzymes and other genes were obtained from 152 DNA samples. Of these 152 unique genomic DNA samples, 140 had genetic variants suggesting dose adjustment for at least one drug. Cardiovascular and psychiatry drugs had the highest number of recommendations, which included United States Food and Drug Administration warnings for highly prescribed drugs metabolized by CYP2C19, CYP2C9, CYP2D6, HLA-A, and VKORC1. CONCLUSIONS: Risk for each drug:gene pairing primarily depends upon the degree of predicted enzyme impairment or activation, width of the therapeutic window, and whether parent compound or metabolite is pharmacologically active. The resulting metabolic variations range from risk of toxicity to therapeutic failure. Pharmacogenomic profiling likely reduces ADR potential by allowing up front drug/dose selection to fit a patient's unique drug-response profile.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacogenetics , United States , Humans , Pharmacogenetics/methods , Cytochrome P-450 CYP2D6/genetics , Pharmaceutical Preparations , Genotype , Nucleotides , Vitamin K Epoxide Reductases/genetics
4.
Exp Mol Pathol ; 97(1): 116-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24927872

ABSTRACT

BACKGROUND: HER2 fluorescence in-situ hybridization (FISH) is used in breast and gastro-esophageal carcinoma for determining HER2 gene amplification and patients' eligibility for HER2 targeted therapeutics. Traditional manual processing of the FISH slides is labor intensive because of multiple steps that require hands on manipulation of the slides and specifically timed intervals between steps. This highly manual processing also introduces inter-run and inter-operator variability that may affect the quality of the FISH result. Therefore, we sought to incorporate an automated processing instrument into our FISH workflow. METHODS: Twenty-six cases including breast (20) and gastro-esophageal (6) cancer comprising 23 biopsies and three excision specimens were tested for HER2 FISH (Pathvysion, Abbott) using the Thermobrite Elite (TBE) system (Leica). Up to 12 slides can be run simultaneously. All cases were previously tested by the Pathvysion HER2 FISH assay with manual preparation. Twenty cells were counted by two observers for each case; five cases were tested on three separate runs by different operators to evaluate the precision and inter-operator variability. RESULTS: There was 100% concordance in the scoring between the manual and TBE methods as well as among the five cases that were tested on three runs. Only one case failed due to poor probe hybridization. In total, seven cases were positive for HER2 amplification (HER2:CEP17 ratio >2.2) and the remaining 19 were negative (HER2:CEP17 ratio <1.8) utilizing the 2007 ASCO/CAP scoring criteria. Due to the automated denaturation and hybridization, for each run, there was a reduction in labor of 3.5h which could then be dedicated to other lab functions. CONCLUSION: The TBE is a walk away pre- and post-hybridization system that automates FISH slide processing, improves work flow and consistency and saves approximately 3.5h of technologist time. The instrument has a small footprint thus occupying minimal counter space. TBE processed slides performed exceptionally well in comparison to the manual technique with no disagreement in HER2 amplification status.


Subject(s)
Breast Neoplasms/genetics , Esophageal Neoplasms/genetics , In Situ Hybridization, Fluorescence/instrumentation , In Situ Hybridization, Fluorescence/methods , Receptor, ErbB-2/genetics , Stomach Neoplasms/genetics , Automation , Biopsy , Breast Neoplasms/pathology , Esophageal Neoplasms/pathology , Female , Gene Amplification , Humans , Reproducibility of Results , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...