Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(9): 9219-23, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25181589

ABSTRACT

We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to ß-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting.

2.
Environ Sci Technol ; 48(3): 1683-91, 2014.
Article in English | MEDLINE | ID: mdl-24404905

ABSTRACT

Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where U(IV) predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed U(IV) species following reduction of U(VI). Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, U(IV) forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm(-2) and <0.037 U nm(-2), respectively). The uraninite (UO2) form of U(IV) predominates only at higher surface loading. U(IV)-TiO2 complexes remain stable for at least 12 months, and U(IV)-Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed U(IV) results from U(VI) reduction by Fe(II) or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable U(IV)-mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on U(IV) speciation helps explain the presence of nonuraninite U(IV) in sediments and has important implications for U transport modeling.


Subject(s)
Geologic Sediments/chemistry , Groundwater/chemistry , Uranium Compounds/analysis , Water Pollutants, Radioactive/analysis , Adsorption , Ferrosoferric Oxide/chemistry , Microscopy, Electron, Transmission , Models, Molecular , Oxidation-Reduction , Surface Properties , Titanium/chemistry , Uranium Compounds/chemistry , Water Pollutants, Radioactive/chemistry , X-Ray Absorption Spectroscopy
3.
Angew Chem Int Ed Engl ; 50(14): 3158-63, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21374772
4.
Chemosphere ; 53(5): 437-46, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12948527

ABSTRACT

Green rusts are mixed Fe(II)/Fe(III) hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH(3)COO, AuCl(n)(OH)(4-n), CuCl(2), or HgCl(2) showed that Ag(I), Au(III), Cu(II), and Hg(II) were readily reduced to Ag(0), Au(0), Cu(0), and Hg(0). Imaging of the resulting solids from the Ag(I)-, Au(III)-, and Cu(II)-amended green rust suspensions by transmission electron microscopy indicated the formation of submicron-sized particles of Ag(0), Au(0), and Cu(0). The facile reduction of Ag(I), Au(III), Cu(II), and Hg(II) to Ag(0), Au(0), Cu(0), and Hg(0), respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.


Subject(s)
Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Metals, Heavy/chemistry , Electron Probe Microanalysis , Microscopy, Electron , Oxidation-Reduction
5.
Environ Sci Technol ; 37(4): 721-7, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12636270

ABSTRACT

Green rusts, which are mixed ferrous/ferric hydroxides, are found in many suboxic environments and are believed to play a central role in the biogeochemistry of Fe. Analysis by U LIII-edge X-ray absorption near edge spectroscopy of aqueous green rust suspensions spiked with uranyl (U(VI)) showed that U(VI) was readily reduced to U(IV) by green rust The extended X-ray absorption fine structure (EXAFS) date for uranium reduced by green rust indicate the formation of a UO2 phase. A theoretical model based on the crystal structure of UO2 was generated by using FEFF7 and fitted to the data for the UO2 standard and the uranium in the green rust samples. The model fits indicate that the number of nearest-neighbor uranium atoms decreases from 12 for the UO2 structure to 5.4 forthe uranium-green rust sample. With an assumed four near-neighbor uranium atoms per uranium atom on the surface of UO2, the best-fit value for the average number of uranium atoms indicates UO2 particles with an average diameter of 1.7 +/- 0.6 nm. The formation of nanometer-scale particles of UO2, suggested by the modeling of the EXAFS data, was confirmed by high-resolution transmission electron microscopy, which showed discrete particles (approximately 2-9 nm in diameter) of crystalline UO2. Our results clearly indicate that U(VI) (as soluble uranyl ion) is readily reduced by green rust to U(IV) in the form of relatively insoluble UO2 nanoparticles, suggesting that the presence of green rusts in the subsurface may have significant effects on the mobility of uranium, particularly under iron-reducing conditions.


Subject(s)
Ferric Compounds/chemistry , Models, Theoretical , Uranium Compounds/chemistry , Uranium/chemistry , Ferrous Compounds/chemistry , Microscopy, Electron , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...