Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105692, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301892

ABSTRACT

PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.


Subject(s)
Gene Expression Regulation , Protein Kinase C , Signal Transduction , Gene Expression Regulation/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Transcription Factors/metabolism , Humans , Animals , Cell Nucleus/enzymology , Cell Nucleus/genetics
2.
Cell Death Discov ; 10(1): 13, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191532

ABSTRACT

ΔNp63α, a member of the p53 family of transcription factors, plays a critical role in maintaining the proliferative potential of stem cells in the stratified epithelium. Although ΔNp63α is considered an oncogene and is frequently overexpressed in squamous cell carcinoma, loss of ΔNp63α expression is associated with increased tumor cell invasion and metastasis. We recently identified a ΔNp63α/miR-320a/PKCγ signaling axis that regulates cancer cell invasion by inhibiting phosphorylation of the small GTPase Rac1, a master switch of cell motility that positively regulates cell invasion in multiple human cancers. In this study, we identified a novel mechanism by which ΔNp63α negatively regulates Rac1 activity, by inhibiting the expression of the Rac-specific Guanine Exchange Factor PREX1. ΔNp63α knockdown in multiple squamous cell carcinoma cell lines leads to increased Rac1 activation, which is abrogated by treatment with the Rac1 inhibitor NSC23766. Furthermore, ΔNp63α negatively regulates PREX1 transcript and protein levels. Using a Rac-GEF activation assay, we also showed that ΔNp63α reduces the levels of active PREX1. The inhibition of the PREX1-Rac1 signaling axis by ΔNp63α leads to impaired cell invasion, thus establishing the functional relevance of this link. Our results elucidated a novel molecular mechanism by which ΔNp63α negatively affects cancer cell invasion and identifies the ΔNp63α/Rac1 axis as a potential target for metastasis.

3.
J Biol Chem ; 299(8): 104983, 2023 08.
Article in English | MEDLINE | ID: mdl-37390986

ABSTRACT

The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gßγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C ß3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.


Subject(s)
Actins , Arachidonic Acids , Cell Membrane Structures , Neoplasms , Receptors, Eicosanoid , Humans , Actins/metabolism , Neoplasms/metabolism , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , rho GTP-Binding Proteins/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Cell Membrane Structures/metabolism , Nanotubes , Receptors, Eicosanoid/antagonists & inhibitors , Receptors, Eicosanoid/metabolism , Cell Line, Tumor , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Signal Transduction
4.
STAR Protoc ; 3(2): 101437, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35677607

ABSTRACT

Ruffles are actin-rich membrane protrusions implicated in actin reorganization and initiation of cell motility. Here, we describe methods for measuring and analyzing ruffle dynamics in live cells and average ruffle area per cell in fixed samples. The specific steps described are for the analysis of A549 lung adenocarcinoma cells, but the protocol can be applied to other cell types. The protocol has applications for dissecting the signaling events linked to ruffling. For complete details on the use and execution of this protocol, please refer to Cooke et al. (2021).


Subject(s)
Actins , Adenocarcinoma of Lung , Actins/metabolism , Adenocarcinoma of Lung/metabolism , Cell Membrane Structures/metabolism , Cell Movement , Humans
5.
Trends Cell Biol ; 32(10): 815-818, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35753960

ABSTRACT

Rac-GEFs operate in a nonredundant manner as downstream effectors of receptor tyrosine kinases to promote ruffle formation, indicative of unique modes of regulation and targeting. Current research is shedding light on the intricate signaling paradigms shaping spatiotemporal activation of the small GTPase Rac during the generation of actin-rich membrane protrusions.


Subject(s)
Actins , Signal Transduction , Actin Cytoskeleton/metabolism , Actins/metabolism , Humans
6.
STAR Protoc ; 3(2): 101367, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35542175

ABSTRACT

Here, we describe a protocol for fluorescence-activated cell sorting (FACS) of human EpCAM+ cells from fresh surgically resected specimens. We then use Q-PCR to identify specific molecular targets associated with the metastatic phenotype. This combined approach enables a qualitative and quantitative gene expression analysis of lung cancer samples. We describe how to use the protocol for Rac GEFs, but it can be applied broadly to other molecular targets. For complete details on the use and execution of this protocol, please refer to Cooke et al. (2021) and Quatromoni et al. (2015).


Subject(s)
Guanine Nucleotide Exchange Factors , Lung Neoplasms , Epithelial Cell Adhesion Molecule/genetics , Flow Cytometry/methods , Gene Expression , Guanine , Humans , Lung Neoplasms/genetics , Nucleotides
7.
Sci Signal ; 15(729): eabo0264, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35412850

ABSTRACT

Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.


Subject(s)
Diglycerides , Neoplasms , Animals , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Ecosystem , Mammals/metabolism , Neoplasms/therapy , Signal Transduction
8.
Cancer Res Commun ; 2(11): 1372-1387, 2022 11.
Article in English | MEDLINE | ID: mdl-36818489

ABSTRACT

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of cancer. The different members of the PKC family control cellular events associated with cancer development and progression. Whereas the classical/conventional PKCα isozyme has been linked to tumor suppression in most cancer types, here we demonstrate that this kinase is required for the mitogenic activity of aggressive human prostate cancer cells displaying aberrantly high PKCα expression. Immunohistochemical analysis showed abnormal up-regulation of PKCα in human primary prostate tumors. Interestingly, silencing PKCα expression from aggressive prostate cancer cells impairs cell cycle progression, proliferation and invasion, as well as their tumorigenic activity in a mouse xenograft model. Mechanistic analysis revealed that PKCα exerts a profound control of gene expression, particularly over genes and transcriptional networks associated with cell cycle progression and E2F transcription factors. PKCα RNAi depletion from PC3 prostate cancer cells led to a reduction in the expression of pro-inflammatory cytokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a prominent down-regulation of the immune checkpoint ligand PD-L1. This PKCα-dependent gene expression profile was corroborated in silico using human prostate cancer databases. Our studies established PKCα as a multifunctional kinase that plays pleiotropic roles in prostate cancer, particularly by controlling genetic networks associated with tumor growth and progression. The identification of PKCα as a pro-tumorigenic kinase in human prostate cancer provides strong rationale for the development of therapeutic approaches towards targeting PKCα or its effectors.


Subject(s)
Prostatic Neoplasms , Protein Kinase C-alpha , Male , Humans , Mice , Animals , Protein Kinase C-alpha/genetics , Gene Regulatory Networks , Protein Kinase C/genetics , Cell Division , Prostatic Neoplasms/genetics , Isoenzymes/genetics
9.
Cancer Res Commun ; 2(12): 1711-1726, 2022 12.
Article in English | MEDLINE | ID: mdl-36861094

ABSTRACT

Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.


Subject(s)
GTP-Binding Proteins , rac GTP-Binding Proteins , Mice , Animals , rac GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Cell Movement , Cell Division
10.
Cell Rep ; 37(5): 109905, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731623

ABSTRACT

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.


Subject(s)
Adenocarcinoma of Lung/enzymology , Guanine Nucleotide Exchange Factors/metabolism , Lung Neoplasms/enzymology , Receptor Protein-Tyrosine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rac1 GTP-Binding Protein/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Aged , Cell Movement , Epithelial Cell Adhesion Molecule/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , rac1 GTP-Binding Protein/genetics , Axl Receptor Tyrosine Kinase
11.
J Med Chem ; 64(15): 11418-11431, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34279947

ABSTRACT

DAG-lactones represent useful templates for the design of potent and selective C1 domain ligands for PKC isozymes. The ester moiety at the sn-1 position, a common feature in this template, is relevant for C1 domain interactions, but it represents a labile group susceptible to endogenous esterases. An interesting challenge involves replacing the ester group of these ligands while still maintaining biological activity. Here, we present the synthesis and functional characterization of novel diacylglycerol-lactones containing heterocyclic ring substituents at the sn-1 position. Our results showed that the new compound 10B12, a DAG-lactone with an isoxazole ring, binds PKCα and PKCε with nanomolar affinity. Remarkably, 10B12 displays preferential selectivity for PKCε translocation in cells and induces a PKCε-dependent reorganization of the actin cytoskeleton into peripheral ruffles in lung cancer cells. We conclude that introducing a stable isoxazole ring as an ester surrogate in DAG-lactones emerges as a novel structural approach to achieve PKC isozyme selectivity.


Subject(s)
Diglycerides/pharmacology , Drug Design , Heterocyclic Compounds/pharmacology , Lactones/pharmacology , Protein Kinase C/metabolism , Diglycerides/chemical synthesis , Diglycerides/chemistry , Dose-Response Relationship, Drug , HeLa Cells , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Isoenzymes/metabolism , Lactones/chemical synthesis , Lactones/chemistry , Molecular Structure , Structure-Activity Relationship
12.
Mol Cell Oncol ; 8(6): 2013723, 2021.
Article in English | MEDLINE | ID: mdl-35419483

ABSTRACT

In a recent study, our group identified RAC guanine nucleotide exchange factors (RAC-GEFs) driving motility signaling in KRAS mutant lung adenocarcinoma cells. The RAC-GEFs FARP1, ARHGEF39 and TIAM2 play fundamental roles in the formation of membrane ruffles in response to growth factor receptor stimulation.

13.
Small GTPases ; 12(3): 202-208, 2021 05.
Article in English | MEDLINE | ID: mdl-31648598

ABSTRACT

Oncogenic protein kinase C epsilon (PKCε) promotes the formation of membrane ruffles and motility in non-small cell lung cancer (NSCLC) cells. We found that PKCε is down-regulated when NSCLC cells undergo epithelial-to-mesenchymal transition (EMT) in response to TGF-ß, thus becoming dispensable for migration and invasion in the mesenchymal state. PKCε silencing or inhibition leads to stress fibre formation, suggesting that this kinase negatively regulates RhoA activity. Ruffle formation induced by PKCε activation in the epithelial state is dependent on PI3K, but does not involve the PI3K-dependent Rac-GEFs Ect2, Trio, Vav2 or Tiam1, suggesting alternative Rac-GEFs as mediators of this response. In the proposed model, PKCε acts as a rheostat for Rho GTPases that differs in the epithelial and mesenchymal states.


Subject(s)
Actin Cytoskeleton/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Protein Kinase C-epsilon/metabolism , rho GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Protein Kinase C-epsilon/genetics , Signal Transduction , Tumor Cells, Cultured , rho GTP-Binding Proteins/genetics
14.
Adv Biol Regul ; 78: 100755, 2020 12.
Article in English | MEDLINE | ID: mdl-33017725

ABSTRACT

Classical and novel protein kinase C (PKC) isozymes (c/nPKCs), members of the PKC family that become activated by the lipid second messenger diacylglycerol (DAG) and phorbol esters, exert a myriad of cellular effects that impact proliferative and motile cellular responses. While c/nPKCs have been indisputably associated with tumor promotion, their roles exceed by far their sole involvement as promoter kinases. Indeed, this original dogma has been subsequently redefined by the introduction of several new concepts: the identification of tumor suppressing roles for c/nPKCs, and their participation in early and late stages of carcinogenesis. This review dives deep into the intricate roles of c/nPKCs in cancer initiation as well as in the different stages of the metastatic cascade, with great emphasis in their involvement in cancer cell motility via regulation of small Rho GTPases, the production of extracellular matrix (ECM)-degrading proteases, and the epithelial-to-mesenchymal transition (EMT) program required for the acquisition of highly invasive traits. Here, we highlight functional interplays between either PKCα or PKCε and mesenchymal features that may ultimately contribute to anticancer drug resistance in cellular and animal models. We also introduce the novel hypothesis that c/nPKCs may be implicated in the control of immune evasion through the regulation of immune checkpoint protein expression. In summary, dissecting the colossal complexity of c/nPKC signaling in the wide spectrum of cancer progression may bring new opportunities for the development of meaningful tools aiding for cancer prognosis and therapy.


Subject(s)
Neoplasm Metastasis , Neoplasms/pathology , Protein Isoforms/metabolism , Protein Kinase C/metabolism , Animals , Carcinogenesis , Diglycerides/metabolism , Epithelial-Mesenchymal Transition , Humans , Mutation , Neoplasms/enzymology , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Kinase C/chemistry , Protein Kinase C/genetics
15.
Cancer Res ; 80(23): 5166-5173, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32994205

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most frequent subtype of lung cancer and remains a highly lethal malignancy and one of the leading causes of cancer-related deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histologic form of NSCLC. In this study, we examined the role of PKCϵ, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Database analysis revealed an association between PKCϵ expression and poor outcome in patients with lung adenocarcinoma specifically harboring KRAS mutations. A PKCϵ-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D ;PKCϵ-/- mice) demonstrated the requirement of PKCϵ for Kras-driven lung tumorigenesis in vivo, which was consistent with impaired transformed growth reported in PKCϵ-deficient KRAS-dependent NSCLC cells. Moreover, PKCϵ-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA sequencing revealed little overlap for PKCϵ and KRAS in the control of genes and biological pathways relevant in NSCLC, suggesting that a permissive role of PKCϵ in KRAS-driven lung tumorigenesis may involve nonredundant mechanisms. Our results thus, highlight the relevance and potential of targeting PKCϵ for lung cancer therapeutics. SIGNIFICANCE: These findings demonstrate that KRAS-mediated tumorigenesis requires PKCϵ expression and highlight the potential for developing PKCϵ-targeted therapies for oncogenic RAS-driven malignancies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Protein Kinase C-epsilon/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Animals , Benzo(a)pyrene/toxicity , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Mice, Knockout , Mice, Transgenic , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Protein Kinase C-epsilon/genetics
16.
Am J Physiol Cell Physiol ; 319(5): C877-C884, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32845720

ABSTRACT

Tunneling nanotubes (TNTs) emerged as important specialized actin-rich membrane protrusions for cell-to-cell communication. These structures allow the intercellular exchange of material, such as ions, soluble proteins, receptors, vesicles and organelles, therefore exerting critical roles in normal cell function. Indeed, TNTs participate in a number of physiological processes, including embryogenesis, immune response, and osteoclastogenesis. TNTs have been also shown to contribute to the transmission of retroviruses (e.g., human immunodeficiency virus-1, HIV-1) and coronaviruses. As with other membrane protrusions, the involvement of Rho GTPases in the formation of these elongated structures is undisputable, although the mechanisms involved are not yet fully elucidated. The tight control of Rho GTPase function by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) strongly suggests that localized control of these Rho regulators may contribute to TNT assembly and disassembly. Deciphering the intricacies of the complex signaling mechanisms leading to actin reorganization and TNT development would reveal important information about their involvement in normal cellular physiology as well as unveil potential targets for disease management.


Subject(s)
Betacoronavirus , Cell Communication , Coronavirus Infections/transmission , Nanotubes , Pneumonia, Viral/transmission , rho GTP-Binding Proteins/metabolism , Betacoronavirus/physiology , COVID-19 , HIV Infections/transmission , Humans , Pandemics , SARS-CoV-2 , rho GTP-Binding Proteins/genetics
17.
J Biol Chem ; 295(40): 13698-13710, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32817335

ABSTRACT

A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.


Subject(s)
Cell Membrane/metabolism , Guanosine Triphosphate/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Membrane/genetics , Cell Membrane/pathology , Humans , Male , Microscopy, Fluorescence , Neoplasm Proteins/genetics , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , rac1 GTP-Binding Protein/genetics
18.
Front Cell Dev Biol ; 8: 118, 2020.
Article in English | MEDLINE | ID: mdl-32158759

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) representing ∼85% of new diagnoses. The disease is often detected in an advanced metastatic stage, with poor prognosis and clinical outcome. In order to escape from the primary tumor, cancer cells acquire highly motile and invasive phenotypes that involve the dynamic reorganization of the actin cytoskeleton. These processes are tightly regulated by Rac1, a small G-protein that participates in the formation of actin-rich membrane protrusions required for cancer cell motility and for the secretion of extracellular matrix (ECM)-degrading proteases. In this perspective article we focus on the mechanisms leading to aberrant Rac1 signaling in NSCLC progression and metastasis, highlighting the role of Rac Guanine nucleotide Exchange Factors (GEFs). A plausible scenario is that specific Rac-GEFs activate discrete intracellular pools of Rac1, leading to unique functional responses in the context of specific oncogenic drivers, such as mutant EGFR or mutant KRAS. The identification of dysregulated Rac signaling regulators may serve to predict critical biomarkers for metastatic disease in lung cancer patients, ultimately aiding in refining patient prognosis and decision-making in the clinical setting.

19.
Front Oncol ; 9: 1323, 2019.
Article in English | MEDLINE | ID: mdl-31828042

ABSTRACT

ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.

20.
Cell Death Dis ; 10(9): 680, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31515469

ABSTRACT

ΔNp63α, a member of the p53 family of transcription factors, is overexpressed in a number of cancers and plays a role in proliferation, differentiation, migration, and invasion. ΔNp63α has been shown to regulate several microRNAs that are involved in development and cancer. We identified miRNA miR-320a as a positively regulated target of ΔNp63α. Previous studies have shown that miR-320a is downregulated in colorectal cancer and targets the small GTPase Rac1, leading to a reduction in noncanonical WNT signaling and EMT, thereby inhibiting tumor metastasis and invasion. We showed that miR-320a is a direct target of ΔNp63α. Knockdown of ΔNp63α in HaCaT and A431 cells downregulates miR-320a levels and leads to a corresponding elevation in PKCγ transcript and protein levels. Rac1 phosphorylation at Ser71 was increased in the absence of ΔNp63α, whereas overexpression of ΔNp63α reversed S71 phosphorylation of Rac1. Moreover, increased PKCγ levels, Rac1 phosphorylation and cell invasion observed upon knockdown of ΔNp63α was reversed by either overexpressing miR-320a mimic or Rac1 silencing. Finally, silencing PKCγ or treatment with the PKC inhibitor Gö6976 reversed increased Rac1 phosphorylation and cell invasion observed upon silencing ΔNp63α. Taken together, our data suggest that ΔNp63α positively regulates miR-320a, thereby inhibiting PKCγ expression, Rac1 phosphorylation, and cancer invasion.


Subject(s)
MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Protein Kinase C-delta/metabolism , Tumor Suppressor Protein p53/metabolism , rac1 GTP-Binding Protein/metabolism , Blotting, Western , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , MicroRNAs/genetics , Neoplasm Invasiveness/pathology , Phosphorylation/genetics , Phosphorylation/physiology , Protein Kinase C-delta/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics , rac1 GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...