Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
2.
Sci Rep ; 11(1): 19138, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580349

ABSTRACT

Pleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.32), observed in 21% of 118 tumours, resulted in disordered expression of transcripts from Hedgehog pathways and the T-cell synapse including VISTA. Co-deletion of Interferon Type I genes and CDKN2A was present in half of tumours and was a predictor of poor survival. We also found previously unrecognised deletions in RB1 in 26% of cases and show sub-micromolar responses to downstream PLK1, CHEK1 and Aurora Kinase inhibitors in primary mesothelioma cells. Defects in Hippo pathways that included RASSF7 amplification and NF2 or LATS1/2 mutations were present in 50% of tumours and were accompanied by micromolar responses to the YAP1 inhibitor Verteporfin. Our results suggest new therapeutic avenues in mesothelioma and indicate targets and biomarkers for immunotherapy.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/immunology , Hippo Signaling Pathway/genetics , Mesothelioma, Malignant/genetics , Pleural Neoplasms/genetics , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biopsy , DNA Copy Number Variations , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genomics , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/immunology , Humans , Male , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/immunology , Mesothelioma, Malignant/pathology , Middle Aged , Mutation , Pleura/pathology , Pleural Neoplasms/drug therapy , Pleural Neoplasms/immunology , Pleural Neoplasms/pathology , Primary Cell Culture , Whole Genome Sequencing
3.
EBioMedicine ; 71: 103538, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34425308

ABSTRACT

BACKGROUND: Normal airway microbial communities play a central role in respiratory health but are poorly characterized. Cigarette smoking is the dominant global environmental influence on lung function, and asthma has become the most prevalent chronic respiratory disease worldwide. Both conditions have major microbial components that are incompletely defined. METHODS: We investigated airway bacterial communities in a general population sample of 529 Australian adults. Posterior oropharyngeal swabs were analyzed by sequencing of the 16S rRNA gene. The microbiota were characterized according to their prevalence, abundance and network memberships. FINDINGS: The microbiota were similar across the general population, and were strongly organized into co-abundance networks. Smoking was associated with diversity loss, negative effects on abundant taxa, profound alterations to network structure and expansion of Streptococcus spp. By contrast, the asthmatic microbiota were selectively affected by an increase in Neisseria spp. and by reduced numbers of low abundance but prevalent organisms. INTERPRETATION: Our study shows that the healthy airway microbiota in this population were contained within a highly structured ecosystem, suggesting balanced relationships between the microbiome and human host factors. The marked abnormalities in smokers may contribute to chronic obstructive pulmonary disease (COPD) and lung cancer. The narrow spectrum of abnormalities in asthmatics encourages investigation of damaging and protective effects of specific bacteria. FUNDING: The study was funded by the Asmarley Trust and a Wellcome Joint Senior Investigator Award to WOCC and MFM (WT096964MA and WT097117MA). The Busselton Healthy Ageing Study is supported by the Government of Western Australia (Office of Science, Department of Health) the City of Busselton, and private donations.


Subject(s)
Asthma/epidemiology , Microbiota , Respiratory Mucosa/microbiology , Smoking/epidemiology , Adult , Aged , Asthma/etiology , Australia/epidemiology , Computational Biology/methods , Disease Susceptibility , Female , Humans , Male , Metagenomics/methods , Middle Aged , Population Surveillance , RNA, Ribosomal, 16S , Smoking/adverse effects , Tobacco Smoking
4.
Eur Respir J ; 56(6)2020 12.
Article in English | MEDLINE | ID: mdl-32675199

ABSTRACT

Alpha-1 antitrypsin deficiency (AATD), mainly due to the PI*ZZ genotype in SERPINA1, is one of the most common inherited diseases. Since it is associated with a high disease burden and partially prevented by smoking cessation, identification of PI*ZZ individuals through genotyping could improve health outcomes.We examined the frequency of the PI*ZZ genotype in individuals with and without diagnosed AATD from UK Biobank, and assessed the associations of the genotypes with clinical outcomes and mortality. A phenome-wide association study (PheWAS) was conducted to reveal disease associations with genotypes. A polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio was used to evaluate variable penetrance of PI*ZZ.Among 458 164 European-ancestry participants in UK Biobank, 140 had the PI*ZZ genotype and only nine (6.4%, 95% CI 3.4-11.7%) of them were diagnosed with AATD. Those with PI*ZZ had a substantially higher odds of COPD (OR 8.8, 95% CI 5.8-13.3), asthma (OR 2.0, 95% CI 1.4-3.0), bronchiectasis (OR 7.3, 95%CI 3.2-16.8), pneumonia (OR 2.7, 95% CI 1.5-4.9) and cirrhosis (OR 7.8, 95% CI 2.5-24.6) diagnoses and a higher hazard of mortality (2.4, 95% CI 1.2-4.6), compared to PI*MM (wildtype) (n=398 424). These associations were stronger among smokers. PheWAS demonstrated associations with increased odds of empyema, pneumothorax, cachexia, polycythaemia, aneurysm and pancreatitis. Polygenic risk score and PI*ZZ were independently associated with FEV1/FVC <0.7 (OR 1.4 per 1-sd change, 95% CI 1.4-1.5 and OR 4.5, 95% CI 3.0-6.9, respectively).The important underdiagnosis of AATD, whose outcomes are partially preventable through smoking cession, could be improved through genotype-guided diagnosis.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Undiagnosed Diseases , alpha 1-Antitrypsin Deficiency , Cost of Illness , Genotype , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/epidemiology
5.
Histopathology ; 77(3): 423-436, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32333813

ABSTRACT

AIMS: Nuclear grade has been recently validated as a powerful prognostic tool in epithelioid malignant pleural mesothelioma (E-MPM). In other studies histological parameters including pleomorphic features and growth patterns were also shown to exert prognostic impact. The primary aims of our study are (i) externally validate the prognostic role of pleomorphic features in E-MPM and (ii) investigate if evaluating growth pattern in addition to 2-tier nuclear grade improves prognostication. METHODS AND RESULTS: 614 consecutive cases of E-MPM from our institution over a period of 15 years were retrospectively reviewed, of which 51 showed pleomorphic features. E-MPM with pleomorphic features showed significantly worse overall survival compared to those without (5.4 versus 14.7 months). Tumours with predominantly micropapillary pattern showed the worst survival (6.2 months) followed by solid (10.5 months), microcystic (15.3 months), discohesive (16.1 months), trabecular (17.6 months) and tubulo-papillary (18.6 months). Sub-classification of growth patterns into high grade (solid, micropapillary) and low grade (all others) led to good separation of overall survival (10.5 versus 18.0 months) but did not predict survival independent of 2-tier nuclear grade. A composite score comprised of growth pattern and 2-tier nuclear grade did not improve prognostication compared with nuclear grade alone. Intra-tumoural heterogeneity in growth patterns is ubiquitous. CONCLUSIONS: Our findings support the incorporation of E-MPM with pleomorphic features in the epithelioid subtype as a highly aggressive variant distinct from 2-tier nuclear grade. E-MPM demonstrates extensive heterogeneity in growth pattern but its evaluation does not offer additional prognostic utility to 2-tier nuclear grade.


Subject(s)
Mesothelioma, Malignant/pathology , Pleural Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Epithelioid Cells/pathology , Female , Humans , Male , Middle Aged , Neoplasm Grading/methods , Prognosis
7.
Mol Oncol ; 13(11): 2406-2421, 2019 11.
Article in English | MEDLINE | ID: mdl-31461552

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in the world. The most prevalent subtype, accounting for 85% of cases, is non-small-cell lung cancer (NSCLC). Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the most common subtypes. Despite recent advances in treatment, the low 5-year survival rate of NSCLC patients (approximately 13%) reflects the lack of early diagnostic biomarkers and incomplete understanding of the underlying disease mechanisms. We hypothesized that integration of metabolomic, transcriptomic and genetic profiles of tumours and matched normal tissues could help to identify important factors and potential therapeutic targets that contribute to tumorigenesis. We integrated omics profiles in tumours and matched adjacent normal tissues of patients with LUSC (N = 20) and LUAD (N = 17) using multiple system biology approaches. We confirmed the presence of previously described metabolic pathways in NSCLC, particularly those mediating the Warburg effect. In addition, through our combined omics analyses we found that metabolites and genes that contribute to haemostasis, angiogenesis, platelet activation and cell proliferation were predominant in both subtypes of NSCLC. The important roles of adenosine diphosphate in promoting cancer metastasis through platelet activation and angiogenesis suggest this metabolite could be a potential therapeutic target.


Subject(s)
Adenosine Diphosphate/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Profiling , Hemostasis/genetics , Lung Neoplasms/blood , Metabolomics , Platelet Activation/genetics , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Female , Gene Ontology , Gene Regulatory Networks/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Metabolome/genetics , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics
8.
Clin Exp Allergy ; 49(10): 1342-1351, 2019 10.
Article in English | MEDLINE | ID: mdl-31379025

ABSTRACT

BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totalling 8273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analysed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P = 4.3 × 10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P < 5 × 10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P = 4.9 × 10-7 ), 14q22 (rs7493885 near NIN; P = 2.9 × 10-6 ) and 2p22 (rs232542 near CYP1B1; P = 4.1 × 10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSIONS AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Tobacco Smoke Pollution/adverse effects , Child , Cytochrome P-450 CYP1B1/genetics , Cytoskeletal Proteins/genetics , DNA Repair Enzymes/genetics , Female , Genome-Wide Association Study , Humans , Hydrolases/genetics , Male , Microfilament Proteins/genetics , Nuclear Proteins/genetics
9.
Sci Rep ; 9(1): 9218, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239465

ABSTRACT

A low quadriceps slow-twitch (ST), oxidative (relative to fast-twitch) fiber proportion is prevalent in chronic diseases such Chronic Obstructive Pulmonary Disease (COPD) and is associated with exercise limitation and poor outcomes. Benefits of an increased ST fiber proportion are demonstrated in genetically modified animals. Pathway analysis of published data of differentially expressed genes in mouse ST and FT fibers, mining of our microarray data and a qPCR analysis of quadriceps specimens from COPD patients and controls were performed. ST markers were quantified in C2C12 myotubes with EGF-neutralizing antibody, EGFR inhibitor or an EGFR-silencing RNA added. A zebrafish egfra mutant was generated by genome editing and ST fibers counted. EGF signaling was (negatively) associated with the ST muscle phenotype in mice and humans, and muscle EGF transcript levels were raised in COPD. In C2C12 myotubes, EGFR inhibition/silencing increased ST, including mitochondrial, markers. In zebrafish, egfra depletion increased ST fibers and mitochondrial content. EGF is negatively associated with ST muscle phenotype in mice, healthy humans and COPD patients. EGFR blockade promotes the ST phenotype in myotubes and zebrafish embryos. EGF signaling suppresses the ST phenotype, therefore EGFR inhibitors may be potential treatments for COPD-related muscle ST fiber loss.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Phenotype , Protein Kinase Inhibitors/pharmacology , Aged , Animals , Case-Control Studies , Epidermal Growth Factor/genetics , Female , Humans , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Middle Aged , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Oxidation-Reduction/drug effects , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , RNA, Messenger/genetics , Zebrafish
10.
Am J Respir Crit Care Med ; 199(4): 478-488, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30339462

ABSTRACT

RATIONALE: Polymorphisms on chromosome 17q21 confer the major genetic susceptibility to childhood-onset asthma. Risk alleles positively correlate with ORMDL3 (orosomucoid-like 3) expression. The locus influences disease severity and the frequency of human rhinovirus (HRV)-initiated exacerbations. ORMDL3 is known to regulate sphingolipid synthesis by binding serine palmitoyltransferase, but its role in inflammation is incompletely understood. OBJECTIVES: To investigate the role of ORMDL3 in cellular inflammation. METHODS: We modeled a time series of IL1B-induced inflammation in A549 cells, using cytokine production as outputs and testing effects of ORMDL3 siRNA knockdown, ORMDL3 overexpression, and the serine palmitoyltransferase inhibitor myriocin. We replicated selected findings in normal human bronchial epithelial cells. Cytokine and metabolite levels were analyzed by analysis of variance. Transcript abundances were analyzed by group means parameterization, controlling the false discovery rate below 0.05. MEASUREMENTS AND MAIN RESULTS: Silencing ORMDL3 led to steroid-independent reduction of IL6 and IL8 release and reduced endoplasmic reticulum stress after IL1B stimulation. Overexpression and myriocin conversely augmented cytokine release. Knockdown reduced expression of genes regulating host-pathogen interactions, stress responses, and ubiquitination: in particular, ORMDL3 knockdown strongly reduced expression of the HRV receptor ICAM1. Silencing led to changes in levels of transcripts and metabolites integral to glycolysis. Increased levels of ceramides and the immune mediator sphingosine-1-phosphate were also observed. CONCLUSIONS: The results show ORMDL3 has pleiotropic effects during cellular inflammation, consistent with its substantial genetic influence on childhood asthma. Actions on ICAM1 provide a mechanism for the locus to confer susceptibility to HRV-induced asthma.


Subject(s)
Asthma/genetics , Inflammation/metabolism , Membrane Proteins/physiology , A549 Cells , Cytokines/metabolism , Endoplasmic Reticulum Stress , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Membrane Proteins/genetics , Sphingolipids/metabolism
11.
Sci Rep ; 8(1): 12165, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111857

ABSTRACT

Skeletal muscle dysfunction is a frequent extra-pulmonary manifestation of Chronic Obstructive Pulmonary Disease (COPD) with implications for both quality of life and survival. The underlying biology nevertheless remains poorly understood. We measured global gene transcription in the quadriceps using Affymetrix HuGene1.1ST arrays in an unselected cohort of 79 stable COPD patients in secondary care and 16 healthy age- and gender-matched controls. We detected 1,826 transcripts showing COPD-related variation. Eighteen exhibited ≥2fold changes (SLC22A3, FAM184B, CDKN1A, FST, LINC01405, MUSK, PANX1, ANKRD1, C12orf75, MYH1, POSTN, FRZB, TNC, ACTC1, LINC00310, MYH3, MYBPH and AREG). Thirty-one transcripts possessed previous reported evidence of involvement in COPD through genome-wide association, including FAM13A. Network analysis revealed a substructure comprising 6 modules of co-expressed genes. We identified modules with mitochondrial and extracellular matrix features, of which IDH2, a central component of the mitochondrial antioxidant pathway, and ABI3BP, a proposed switch between proliferation and differentiation, represent hubs respectively. COPD is accompanied by coordinated patterns of transcription in the quadriceps involving the mitochondria and extracellular matrix and including genes previously implicated in primary disease processes.


Subject(s)
Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Quadriceps Muscle/metabolism , Aged , Cohort Studies , Extracellular Matrix/metabolism , Female , Gene Expression Profiling/methods , Genome-Wide Association Study , Humans , Lung/metabolism , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Quality of Life , Transcriptome/genetics
12.
Lancet Respir Med ; 6(5): 379-388, 2018 05.
Article in English | MEDLINE | ID: mdl-29496485

ABSTRACT

BACKGROUND: DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS: We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS: 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION: Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING: EU and the Seventh Framework Programme (the MeDALL project).


Subject(s)
Asthma/genetics , CpG Islands , DNA Methylation , Eosinophils/immunology , Epigenesis, Genetic , Asthma/blood , Child , Child, Preschool , DNA/blood , Female , Genome-Wide Association Study , Humans , Male , T-Lymphocytes, Cytotoxic
13.
J Allergy Clin Immunol ; 141(5): 1659-1667.e11, 2018 05.
Article in English | MEDLINE | ID: mdl-28927820

ABSTRACT

BACKGROUND: Atopy, an endotype underlying allergic diseases, has a substantial genetic component. OBJECTIVE: Our goal was to identify novel genes associated with atopy in asthma-ascertained families. METHODS: We implemented a 3-step analysis strategy in 3 data sets: the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) data set (1660 subjects), the Saguenay-Lac-Saint-Jean study data set (1138 subjects), and the Medical Research Council (MRC) data set (446 subjects). This strategy included a single nucleotide polymorphism (SNP) genome-wide association study (GWAS), the selection of related gene pairs based on statistical filtering of GWAS results, and text-mining filtering using Gene Relationships Across Implicated Loci and SNP-SNP interaction analysis of selected gene pairs. RESULTS: We identified the 5q14 locus, harboring the adhesion G protein-coupled receptor V1 (ADGRV1) gene, which showed genome-wide significant association with atopy (rs4916831, meta-analysis P value = 6.8 × 10-9). Statistical filtering of GWAS results followed by text-mining filtering revealed relationships between ADGRV1 and 3 genes showing suggestive association with atopy (P ≤ 10-4). SNP-SNP interaction analysis between ADGRV1 and these 3 genes showed significant interaction between ADGRV1 rs17554723 and 2 correlated SNPs (rs2134256 and rs1354187) within the dynein axonemal heavy chain 5 (DNAH5) gene (Pmeta-int = 3.6 × 10-5 and 6.1 × 10-5, which met the multiple-testing corrected threshold of 7.3 × 10-5). Further conditional analysis indicated that rs2134256 alone accounted for the interaction signal with rs17554723. CONCLUSION: Because both DNAH5 and ADGRV1 contribute to ciliary function, this study suggests that ciliary dysfunction might represent a novel mechanism underlying atopy. Combining GWAS and epistasis analysis driven by statistical and knowledge-based evidence represents a promising approach for identifying new genes involved in complex traits.


Subject(s)
Axonemal Dyneins/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, G-Protein-Coupled/genetics , Adult , Asthma/genetics , Case-Control Studies , Epidemiologic Studies , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male
14.
Nat Rev Microbiol ; 16(2): 111-120, 2018 02.
Article in English | MEDLINE | ID: mdl-29062070

ABSTRACT

Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Lung Diseases/drug therapy , Lung Diseases/microbiology , Acute Disease , Chronic Disease , Drug Resistance, Bacterial , Global Health , Humans , Lung/microbiology , Microbiota
15.
PLoS One ; 12(12): e0190075, 2017.
Article in English | MEDLINE | ID: mdl-29281698

ABSTRACT

INTRODUCTION: Persistent bacterial bronchitis (PBB) is a leading cause of chronic wet cough in young children. This study aimed to characterise the respiratory bacterial microbiota of healthy children and to assess the impact of the changes associated with the development of PBB. Blind, protected brushings were obtained from 20 healthy controls and 24 children with PBB, with an additional directed sample obtained from PBB patients. DNA was extracted, quantified using a 16S rRNA gene quantitative PCR assay prior to microbial community analysis by 16S rRNA gene sequencing. RESULTS: No significant difference in bacterial diversity or community composition (R2 = 0.01, P = 0.36) was observed between paired blind and non-blind brushes, showing that blind brushings are a valid means of accessing the airway microbiota. This has important implications for collecting lower respiratory samples from healthy children. A significant decrease in bacterial diversity (P < 0.001) and change in community composition (R2 = 0.08, P = 0.004) was observed among controls, in comparison with patients. Bacterial communities within patients with PBB were dominated by Proteobacteria, and indicator species analysis showed that Haemophilus and Neisseria were significantly associated with the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not identified by standard routine clinical culture. CONCLUSION: The bacteria present in the lungs of patients with PBB were less diverse in terms of richness and evenness. The results validate the clinical diagnosis, and suggest that more attention to bacterial communities in children with chronic cough may lead to more rapid recognition of this condition with earlier treatment and reduction in disease burden.


Subject(s)
Bacterial Infections/physiopathology , Bronchitis/physiopathology , Microbiota , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male
16.
PLoS Med ; 14(5): e1002294, 2017 05.
Article in English | MEDLINE | ID: mdl-28486474

ABSTRACT

BACKGROUND: Low circulating vitamin D levels have been associated with risk of asthma, atopic dermatitis, and elevated total immunoglobulin E (IgE). These epidemiological associations, if true, would have public health importance, since vitamin D insufficiency is common and correctable. METHODS AND FINDINGS: We aimed to test whether genetically lowered vitamin D levels were associated with risk of asthma, atopic dermatitis, or elevated serum IgE levels, using Mendelian randomization (MR) methodology to control bias owing to confounding and reverse causation. The study employed data from the UK Biobank resource and from the SUNLIGHT, GABRIEL and EAGLE eczema consortia. Using four single-nucleotide polymorphisms (SNPs) strongly associated with 25-hydroxyvitamin D (25OHD) levels in 33,996 individuals, we conducted MR studies to estimate the effect of lowered 25OHD on the risk of asthma (n = 146,761), childhood onset asthma (n = 15,008), atopic dermatitis (n = 40,835), and elevated IgE level (n = 12,853) and tested MR assumptions in sensitivity analyses. None of the four 25OHD-lowering alleles were associated with asthma, atopic dermatitis, or elevated IgE levels (p ≥ 0.2). The MR odds ratio per standard deviation decrease in log-transformed 25OHD was 1.03 (95% confidence interval [CI] 0.90-1.19, p = 0.63) for asthma, 0.95 (95% CI 0.69-1.31, p = 0.76) for childhood-onset asthma, and 1.12 (95% CI 0.92-1.37, p = 0.27) for atopic dermatitis, and the effect size on log-transformed IgE levels was -0.40 (95% CI -1.65 to 0.85, p = 0.54). These results persisted in sensitivity analyses assessing population stratification and pleiotropy and vitamin D synthesis and metabolism pathways. The main limitations of this study are that the findings do not exclude an association between the studied outcomes and 1,25-dihydoxyvitamin D, the active form of vitamin D, the study was underpowered to detect effects smaller than an OR of 1.33 for childhood asthma, and the analyses were restricted to white populations of European ancestry. This research has been conducted using the UK Biobank Resource and data from the SUNLIGHT, GABRIEL and EAGLE Eczema consortia. CONCLUSIONS: In this study, we found no evidence that genetically determined reduction in 25OHD levels conferred an increased risk of asthma, atopic dermatitis, or elevated total serum IgE, suggesting that efforts to increase vitamin D are unlikely to reduce risks of atopic disease.


Subject(s)
Asthma/epidemiology , Dermatitis, Atopic/epidemiology , Immunoglobulin E/blood , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Vitamin D/analogs & derivatives , Adult , Asthma/chemically induced , Child , Dermatitis, Atopic/chemically induced , Genome-Wide Association Study , Humans , Retrospective Studies , Risk Factors , Vitamin D/blood
17.
J Allergy Clin Immunol ; 140(2): 571-577, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28069425

ABSTRACT

BACKGROUND: Total IgE is a therapeutic target in patients with allergic diseases. DNA methylation in white blood cells (WBCs) was associated with total IgE levels in an epigenome-wide association study of white subjects. Whether DNA methylation of eosinophils explains these findings is insufficiently understood. METHODS: We tested for association between genome-wide DNA methylation in WBCs and total IgE levels in 2 studies of Hispanic children: the Puerto Rico Genetics of Asthma and Lifestyle Study (PR-GOAL; n = 306) and the Genes-environments and Admixture in Latino Americans (GALA II) study (n = 573). Whole-genome methylation of DNA from WBCs was measured by using the Illumina Infinium HumanMethylation450 BeadChip. Total IgE levels were measured by using the UniCAP 100 system. In PR-GOAL WBC types (ie, neutrophils, eosinophils, basophils, lymphocytes, and monocytes) in peripheral blood were measured by using Coulter Counter techniques. In the GALA II study WBC types were imputed. Multivariable linear regression was used for the analysis of DNA methylation and total IgE levels, which was first conducted separately for each cohort, and then results from the 2 cohorts were combined in a meta-analysis. RESULTS: CpG sites in multiple genes, including novel findings and results previously reported in white subjects, were significantly associated with total IgE levels. However, adjustment for WBC types resulted in markedly fewer significant sites. Top findings from this adjusted meta-analysis were in the genes ZFPM1 (P = 1.5 × 10-12), ACOT7 (P = 2.5 × 10-11), and MND1 (P = 1.4 × 10-9). CONCLUSIONS: In an epigenome-wide association study adjusted for WBC types (including eosinophils), methylation changes in genes enriched in pathways relevant to asthma and immune responses were associated with total IgE levels among Hispanic children.


Subject(s)
Asthma/blood , Asthma/genetics , DNA Methylation , Hispanic or Latino/genetics , Immunoglobulin E/blood , Leukocytes/metabolism , Adolescent , Adult , Asthma/immunology , Child , CpG Islands , Epigenesis, Genetic , Female , Genome, Human , Genome-Wide Association Study , Humans , Male , Young Adult
18.
PLoS One ; 10(7): e0132923, 2015.
Article in English | MEDLINE | ID: mdl-26167683

ABSTRACT

BACKGROUND: Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants. METHOD: Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity. RESULTS: From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis. CONCLUSIONS: The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes.


Subject(s)
Gastrointestinal Tract/microbiology , Infant, Premature , Sepsis/diagnosis , Feces/microbiology , Female , Humans , Infant, Newborn , Male , Microbiota , Sepsis/microbiology
19.
Genet Epidemiol ; 39(5): 347-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25997986

ABSTRACT

Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful.


Subject(s)
Algorithms , Asthma/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Child , Chromosome Mapping , Computer Simulation , Family , Genetic Linkage , Genome, Human , Genomics/methods , Humans , Phenotype
20.
Nature ; 520(7549): 670-674, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25707804

ABSTRACT

Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genetic Association Studies , Genome, Human/genetics , Immunoglobulin E/blood , Adolescent , Adult , Asthma/blood , Asthma/genetics , Child , CpG Islands/genetics , Eosinophils/cytology , Eosinophils/metabolism , Female , Humans , Inflammation Mediators , Male , Middle Aged , Mitochondrial Proteins/genetics , Pedigree , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...